Allelopathic effect of the Baltic picocyanobacterium Synechococcus sp. on selected diatoms

Authors

  • Zofia Konarzewska Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Sylwia Śliwińska-Wilczewska Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Adam Latała Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland

DOI:

https://doi.org/10.24917/25438832.2.9

Keywords:

allelopathy, Baltic Sea, diatom, growth, fluorescence, picocyanobacteria

Abstract

It is commonly believed that the structure of phytoplankton and the formation of cyanobacterial and algal blooms may be explained by allelopathic interactions. The main aim of this study was to investigate the allelopathic effect of picocyanobacterium Synechococcus sp. on the following growth and fluorescence parameters: the maximum quantum yield of PSII photochemistry (Fv/Fm), and the effective quantum yield of PSII photochemistry (ΦPSII) of selected diatoms - Nitzschia fonticola, Fistulifera saprophila, Navicula perminuta and Amphora coffeaeformis. In this study, it was demonstrated that picocyanobacterium caused allelopathic effects against Baltic diatoms. The results showed that the addition of cell-free filtrate from Synechococcus sp. increased the number of cells of N. fonticola and F. saprophila. Moreover, it was found that picocyanobacterium was stimulated fluorescence parameters of N. fonticola, F. saprophila, and N. perminuta. On the other hand, it was noted that filtrate obtained from picocyanobacterium caused the inhibition of Fv/Fm parameter of A. coffeaeformis. The results of this experiment may provide further information about allelopathic interactions between Baltic picocyanobacteria and diatoms that are crucial to the understanding of algal blooms in aquatic ecosystems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Anderson, D.M. (1989). Toxic algal blooms and red tides: a global perspective. In: Okaichi, D.M. Anderson, T. Nemoto (eds.), Red Tides: Biology, Environmental Science and Toxicology. Elsevier, pp. 11–16.

Anderson, D.M., Glibert, P.M., Burkholder, J.M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries, 25, 704–726. https://doi.org/10.1007/BF02804901

Antunes, J.T., Leão, P.N., Vasconcelos, V.M. (2012). Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii Strain LEGE 99043. Microbial Ecology, 64, 584–592. https://doi.org/10.1007/s00248-012-0061-7

Beardall, J. (2008). Blooms of Synechococcus: An analysis of the problem worldwide and possible causative factors in relation to nuisance blooms in the Gippsland Lakes. Monash University, 1–8.

Błaszczyk, A., Toruńska, A., Kobos, J., Browarczyk-Matusiak, G., Mazur-Marzec, H. (2010). Ekologia toksycznych sinic. Kosmos, 59, 173–198. [In Polish]

Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 62, 667–683.

Chiang, I.Z., Huang, W.Y., Wu, J.T. (2004). Allelochemicals of Botryococcus braunii (Chlorophyceae). Journal of Phycology, 40, 474–480. https://doi.org/10.1111/j.1529-8817.2004.03096.x

Granéli, E., Salomon, P.S., Fistarol, G.O. (2008). The role of allelopathy for harmful algal bloom formation. In: V. Evangelista, L. Barsanti, A. Frassanito, V. Passarelli, P. Gualtieri (eds.), Algal Toxins: Nature, Occurrence, Effect and Detection. NATO Science for Peace and Security Series A: Chemistry and Biology, Netherlands: Springer, pp. 159–178.

Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith, M.H. Chanley (eds.), Culture of Marine Invertebrate Animals. New York, USA: Plenum Press, 26–60.

IAS, (1996). First world congress on allelopathy. A science for the future. http://www-ias.uca.es/ bylaws.htm#CONSTI

Issa, A.A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology, 8, 33–37. https://doi.org/10.1016/S1382-6689(99)00027-7

Keating, K.I. (1977). Allelopathic Influence on Blue-Green Bloom Sequence in a Eutrophic Lake. Science, 196, 885–887. https://doi.org/10.1126/science.196.4292.885

Keating, K.I. (1978). Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science, 199, 971–973. https://doi.org/10.1126/science.199.4332.971

Lafforgue, M., Szeligiewicz, W., Devaux, J., Poulin, M. (1995). Selective mechanisms controlling algal succession in Aydat Lake. Water Science and Technology, 32, 117–127. https://doi.org/10.1016/0273-1223(95)00688-5

Latała, A., Jodłowska, S., Pniewski, F. (2006). Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Archiv für Hydrobiologie, 165, Algological Studies, 122, 137–154. https://doi.org/10.1127/1864-1318/2006/0122-0137

Legrand, C., Rengefors, K., Fistarol, G.O., Granéli, E. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1

Leflaive, J., Ten-Hage, L. (2007). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology, 52, 199–214. https://doi.org/10.1111/j.1365-2427.2006.01689.x

Lewis, W.M.Jr. (1986). Evolutionary interpretation of allelochemical interactions in phytoplankton algae. The American Naturalist, 127, 184–194.

Marie, D., Simon, N., Vaulot, D. (2005). Phytoplankton cell counting by flow cytometry. Algal Culturing Techniques, 1, 253–267. https://doi.org/10.1016/B978-012088426-1/50018-4

Molisch, H. (1937). Der einfluss einer pflanze auf die andere – Allelopathie. Jena: G. Fisher, Verlag, pp 106. [In German]

Mulderij, G., Van Donk, E., Roelofs, G.M. (2003). Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia, 491, 261–271. https://doi.org/10.1023/A:1024483704903

Prince, E.K., Myers, T.L., Kubanek, J. (2008). Effects of harmful algal blooms on competitors: Allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnology and Oceanography, 53, 531–541. https://doi.org/10.4319/lo.2008.53.2.0531

Rzymski, P., Poniedziałek, B., Kokociński, M., Jurczak, T., Lipski, D., Wiktorowicz, K. (2014). Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae, 35, 1–8. https://doi.org/10.1016/j.hal.2014.03.002

Sarkar, R.R., Petrovskii, S.V., Biswas, M., Gupta, A., Chattopadhyay, J. (2006). An ecological study of a marine plankton community based on the field data collected from Bay of Bengal. Ecological Modelling, 193, 589–601. https://doi.org/10.1016/j.ecolmodel.2005.08.038

Sivonen, K., Jones, G. (1999). Cyanobacterial toxins. In: I. Chorus, J. Bartram (eds.), Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. World Health Organization. E & FN Spon, London, pp. 41–111.

Smayda, T.J. (1997). Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42, 1137–1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137

Suikkanen, S., Fistarol, G.O., Granéli, E. (2004). Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308, 85–101. https://doi.org/10.1016/j.jembe.2004.02.012

Suikkanen, S., Fistarol, G.O., Granéli, E. (2005). Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series, 287, 1–9.

Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016). Allelopathic activity of the picocyanobacterium Synechococcus sp. under varied light, temperature and salinity conditions. International Review of Hydrobiology, 101, 1–9. https://doi.org/10.1002/iroh.201501819

Subba Rao, D.V., Pan, Y., Smith, S.J. (1995). Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic Pseudo-nitzschia pungens f. multiseries (Hasle). In: P. Lassus, G. Arzul, E.E. Le Denn, P. Gentien, C. Marcaillou (eds.), Harmful marine algal blooms. Lavoisier Intercept Ltd, Paris, pp. 681–686.

Weissbach, A., Tillmann, U., Legrand, C. (2010). Allelopathic potential of the dinoflagellate Alexandrium tamarense on marine microbial communities. Harmful Algae, 10, 9–18. https://doi.org/10.1016/j.hal.2010.05.007

Wolfe, G.V. (2000). The chemical defense ecology of marine unicellular plankton: Constraints, mechanisms, and impacts. Biological Bulletin, 198, 225–244. https://doi.org/10.2307/1542526

Żak, A., Kosakowska, A. (2015). The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuarine, Coastal and Shelf Science, 167, 113–118. https://doi.org/10.1016/j.ecss.2015.07.038

Downloads

Published

2017-12-31

How to Cite

Konarzewska, Z., Śliwińska-Wilczewska, S., & Latała, A. (2017). Allelopathic effect of the Baltic picocyanobacterium Synechococcus sp. on selected diatoms. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 2(1), 114–123. https://doi.org/10.24917/25438832.2.9

Issue

Section

Ecology and Environmental Protection

Most read articles by the same author(s)