Allelopathic effect of Ulva intestinalis L. on the Baltic filamentous cyanobacterium Nostoc sp.

Authors

  • Gracjana Budzałek Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Sylwia Śliwińska-Wilczewska Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Adam Latała Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland

DOI:

https://doi.org/10.24917/25438832.3.6

Keywords:

allelopathy, Chlorophyta, cyanobacteria, extract, fluorescence, green algae, growth, macroalgae, Ulvophyceae

Abstract

Allelopathy is a prevalent natural phenomenon in aquatic ecosystem. We reported the effects of the green macroalga Ulva intestinalis L. collected from estuaries of the Baltic Sea (Poland) on the growth and chlorophyll fluorescence of common filamentous cyanobacterium Nostoc sp. It was found that the addition of 50 µL mL–1 extracts obtained from U. intestinalis inhibited growth of cyanobacterium and after one week of exposition the reduction was 35% of initial amount of Nostoc sp. In addition, we demonstrated that on the seventh day of the exposition, the values of Fv/Fm of target cyanobacterium after addition of 100 µL mL–1 extracts obtained from U. intestinalis was reduced to 49%, compared to control treatment. These results showed for the first time the allelopathic activity of U. intestinalis on Baltic filamentous cyanobacteria Nostoc sp.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Björk, M., Axelsson, L., Beer, S. (2004). Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Marine Ecology Progress Series, 284, 109–116.

Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 62, 667–683.

Elakovich, S.D., Wooten, J.W. (1995). Allelopathic, herbaceous, vascular hydrophytes. In: Inderjit Dakshini, K.M.M., Einhellig, F.A. (eds.), Allelopathy: Organisms, Processes and Applications. Washington: American Chemical Society, 58. https://doi.org/10.1021/bk-1995-0582.ch004

Friedlander, M., Gonen, Y., Kashman, Y., Beer, S. (1996). Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red seaweed by Ulva cf. lactuca. Journal of Applied Phycology, 8, 21–25. https://doi.org/10.1007/BF02186217

Ghobrial, M.G., Nassr, H.S., Kamil, A.W. (2015). Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes. The Egyptian Journal of Aquatic Research, 41, 69–81. https://doi.org/10.1016/j.ejar.2015.01.001

Gopal, B., Goel, U. (1993). Competition and allelopathy in aquatic plant communities. Botany Research, 59, 155–210. https://doi.org/10.1007/BF02856599

Gross, E.M. (1999). Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: K.M.M. Inderjit Dakshini, C.L. Foy (eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, FL: CRC Press.

Gross, E.M. (2010). Comments on increasing number and abundance of non-indigenous aquatic macrophyte species in Germany. Weed Research, 50, 519–526. https://doi.org/10.1111/j.1365-3180.2010.00812.x

Gross, E.M., Sütfeld, R. (1993). Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum Spicatum L. International Symposium on Natural Phenols in Plant Resistance, 381, 710–716. https://doi.org/10.17660/ActaHortic.1994.381.103

Guillard, R.R., Sieracki, M.S. (2005). Counting cells in cultures with the light microscope. Algal Culturing Techniques, 239–252.

Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith, M.H. Chanley (eds.), Culture of Marine Invertebrate Animals. New York, USA: Plenum Press, 26–60. https://doi.org/10.1007/978-1-4615-8714-9_3

Hutchinson, G.E. (1975). A Treatise on Limnology. Vol. 3. Limnological Botany. New York: Wiley.

Inderjit, Dakshini, K.M.M. (1995). On laboratory bioassays in allelopathy. Botanical Review, 61, 28–44. https://doi.org/10.1007/BF02897150

Jasser, I. (1995). The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia, 306, 21–32.

Jin, Q., Dong, S. (2003). Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 293, 41–55. https://doi.org/10.1016/S0022-0981(03)00214-4

Latała, A., Jodłowska, S., Pniewski, F. (2006). Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Algological Studies/Archiv für Hydrobiologie, 122, 137–154. https://doi.org/10.1127/1864-1318/2006/0122-0137

Leskinen, E., Alstrom-Rapaport, C., Pamilo, P. (2004). Phylogeographical structure, distribution and genetic variation of the green algae Ulva intestinalis and U. compressa (Chlorophyta) in the Baltic Sea area. Molecular Ecology, 13, 2257–2265. https://doi.org/10.1111/j.1365-294X.2004.02219.x

Mjelde, M., Faafeng, B. (1997). Ceratophyllum demersum (L.) hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus level and geographic latitude. Freshwater Biology, 37, 355–365. https://doi.org/10.1046/j.1365-2427.1997.00159.x

Molisch, H. (1937). Der einfluss einer pflanze auf die andere – Allelopathie. Jena: G. Fisher, Verlag, 106.

Nakai, S., Inoue, Y., Hosomi, M., Murakami, A. (1999). Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 39, 47–53. https://doi.org/10.2521/jswtb.33.215

Nan, C., Zhang, H., Lin, S., Zhao, G., Liu, X. (2008). Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures. Aquatic Botany, 89, 9–15. https://doi.org/10.1016/j.aquabot.2008.01.005

Nan, C., Zhang, H., Zhao, G. (2004). Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. Journal of Sea Research, 52, 259–268. https://doi.org/10.1016/j.seares.2004.04.001

Nelson, T.A., Lee, D., Smith, B.C., Prins, R. (2002). Are ‘green tides’ harmful algal blooms? Allelopathic properties of extracts from Ulva fenestrata and Ulvaria obscura. Journal of Phycology, 38, 28–29. https://doi.org/10.1046/j.1529-8817.38.s1.82.x

Omezzine, F., Haouala, R., El Ayeb, A., Boughanmi, N. (2009). Allelopathic and antifungal potentialities of Padina pavonica (L.) extract. Journal of Plant Breeding and Crop Science, 1, 194–203.

Paerl, H.W. (2018). Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins, 10, 76. https://doi.org/10.3390/toxins10020076

Rybak, A.S. (2018a). Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecological indicators, 85, 253–261.

Rybak, A.S. (2018b). The Ulva flexuosa complex (Ulvaceae, Chlorophyta): An updated identification key with special reference to the freshwater and hyperhaline taxa. Phytotaxa, 345(2), 83–103.

Rybak, A.S., Gąbka M. (2018). The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems. Journal of Applied Phycology, 30(2), 1405–1416.

Tang, Y.Z., Gobler, C.J. (2011). The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae, 10, 480–488. https://doi.org/10.1016/j.hal.2011.03.003

Van Aller, R.T. (1985). The Chemistry of Allelopathy. Washington: American Chemical Society, 337–386.

Van Alstyne, K.L., Wolfe, G.V., Freidenburg, T.L., Neill, A., Hicken, C. (2001). Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Marine, Ecology Progress Series, 213, 53–65. https://doi.org/10.3354/meps21305

Van Donk, E., Gulati, R.D. (1995). Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Water Science and Technology, 32, 197–206. https://doi.org/10.1016/0273-1223(95)00699-0

Wang, J.Q., Jin, C.L., Zhang, X., Liu, G. (2001). Polyculture of experiment Penaeus chinensis with various biomass of Ulva pertusa. Journal of Fisheries of China, 25, 32–38.

Wium-Andersen, S., Anthoni, U., Houen, G. (1983). Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry, 22, 2613. https://doi.org/10.1016/0031-9422(83)80178-2

Wium-Andersen, S., Christophersen, C., Houen, G. (1982). Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos, 39, 187–190. https://doi.org/10.2307/3544484

Downloads

Published

2018-12-31

How to Cite

Budzałek, G., Śliwińska-Wilczewska, S., & Latała , A. (2018). Allelopathic effect of Ulva intestinalis L. on the Baltic filamentous cyanobacterium Nostoc sp. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3(1), 80–89. https://doi.org/10.24917/25438832.3.6

Issue

Section

Experimental Biology

Most read articles by the same author(s)