The role of magnesium salts in germination and growth of Cucumis sativus L.

Authors

  • Peiman Zandi Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
  • Katarzyna Możdżeń Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
  • Beata Barabasz-Krasny Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
  • Yaosheng Wang Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China

DOI:

https://doi.org/10.24917/25438832.4.7

Keywords:

fertilisation, germination, mass, organs length

Abstract

The aim of the study was to determine the efect of magnesium sulphate and carbonate on the germination and growth of cucumber seeds (Cucumis sativus L.). For the experiment was used (1) Kottke et al. (1987) medium (pH 5.4) and its modification: (2) Kottke medium with the addition of MgSO4×7H2O (pH 4.8), (3) Kottke medium with the addition of MgCO3×3H2O (pH 6.5) and (4) distilled water (control). Characterisation of the germination capacity of cucumber seeds, under the influence of Kottke medium and its modification, were measured by germination indexes. An attempt was also made to assess the efect of mediums on growth on the length of plants, fresh and dry mass and water content. Germination indexes showed that the presence of magnesium carbonates and sulphates slightly inhibited seed germination, compared to the control. Biometric analysis of C. sativus roots showed a stimulating effect of mediums regardless of the time of watering the plants. Compared to the control, the length of hypocotyl was inhibited in the presence of the magnesium and sulphates ions. Thee highest growth of cucumber stalks in plants watered with mediums supplemented with magnesium salts for all time of experiment was observed. The petiole growth in length was stimulated by all modifications of Kottke medium. Fresh mass values, regardless of the type of medium and the time of its use, were higher in relation to the mass values from the control sample. Only the fresh mass of hypocotyl from plants watered throughout the experiment with magnesium salts was lower compared to the control. For all tested C. sativus organs an increase in the dry mass value was demonstrated. The percentage of water content was the lowest for roots and first leaves compared to the control.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Boreczek, B. (2000). Czy istnieje problem niedoborów siarki w żywieniu roślin? Biuletyn Informacyjny Instytutu Upraw i Nawożenia Gleboznastwa, (1/2), 25–28. [In Polish]

Chief Inspector of Plant Protection and Seed (Główny Inspektor Ochrony Roślin i Nasiennictwa) (2014). Metodyka integrowanej produkcji ogórka gruntowego. https://piorin.gov.pl [In Polish]

Dobermann, A., Cassman, K.G., Mamaril, C.P., Sheehya, J.E. (1998). Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crops Research, 56(1–2), 113–138. https://doi.org/10.1016/S0378-4290(97)00124-X

Domska, D., Bobrzecka, D., Wojtkowiak, K. (1998). Zmiany w zawartości wybranych składników pokarmowych w glebach w zależności od ich odczynu. Zeszyty Problemowe Postępów Nauk Rolniczych, 456, 525–529. [In Polish]

Dubuis, P.H., Marazzi, C., Städler, E., Mauch, F. (2005). Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. Journal of Phytopathology, 153, 27–36. https://doi.org/10.1111/j.1439-0434.2004.00923.x

Gaj, R., Klikocka, H. (2011). Wielofunkcyjne działanie siarki w roślinie – od żywienia do ochrony. Progress in Plant Protection, 51(1), 33–44. [In Polish]

Hell, R., Rennenberg, H. (1998). Nutrients in Ecosystems. In: E. Schnug (ed.), Sulphur in agroecosystems. Dordrecht: Springer.

Hitsuda, K., Tamada, M., Klepker, D. (2005). Sulfur requirement of eight crops at early stages of growth. Agronomy Journal, 97, 155–159.

Hussain, K., Islam, M., Siddique, M.T., Hayat, R., Mohsan, S. (2011). Soybean growth and nitrogen fixation as affected by sulfur fertilization and inoculation under rainfed conditions in Pakistan. International Journal of Agricultura Land Biology, 13, 951–955.

Islam, A.K.M.M., Kato-Noguchi, H. (2012). Allelopathic potentiality of medicinal plant Leucas aspera. International Journal of Agricultural Sustainability, 4–7.

Islam, A.K.M.M., Kato-Noguchi, H. (2014). Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species. The Scientific World Journal, ID 676242. https://doi.org/10.1155/2014/676242

Jadczyszyn, T., Kowalczyk, J., Lipiński, W. (2010). Zalecenia nawozowe dla roślin uprawy polowej i trwałych użytków zielonych. Puławy: IUNG-PIB.

Jaskulski, D., Kotwica, K., Jaskulska, I., Piekarczyk, M., Osiński, G., Pochylski, B. (2012). Elementy współczesnych systemów uprawy roli i roślin – skutki produkcyjne oraz środowiskowe. Fragmenta Agronomica, 29(3), 61–70.

Kabata-Pendias, A., Pendias, H. (1999). Biogeochemia pierwiastków śladowych. Warszawa: PWN. [In Polish]

Kaniuczak, J. (1999). Zawartość niektórych form magnezu w glebie płowej wytworzonej z lessu w zależności od wapnowania i nawożenia mineralnego. Zeszyty Problemowe Postępów Nauk Rolniczych, 467, 307–316. [In Polish]

Konieczna, I., Rut, G., Kliszcz, A. (2018a). Effect of copper and vanadium salts on morphology of carrot (Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens) and wheat (Triticum aestivum L.) plants. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 55–69. https://doi.org/10.24917/25438832.3.4

Konieczna, I., Rut, G., Kliszcz, A. (2018b). Photosynthetic activity of Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens and Triticum aestivum L. in the presence of copper and vanadium salts. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 70–79. https://doi.org/10.24917/25438832.3.5

Kottke, J., Guttenberger, M., Hampp, R., Oberwinkler, F. (1987). An in vitro method establishing mycorrhizae on coniferous tree seedlings. Trees, 1, 191–194. https://doi.org/10.1007/BF00193562

Marska, E., Wróbel, J. (2000). Znaczenie siarki dla roślin uprawnych. Folia Universitatis Agriculturae Stetinensis, 81, 69–76. [In Polish]

Morris, R.J. (2007). Sulphur in agriculture. Global overview. Ferliz Focus, (1/2), 12–16.

Mullan, D., Pietragalla, J. (2012). Leaf relative water content. Physiological breeding II: a field guide to wheat phenotyping CIMMYT, Mexico, p. 25–27.

Pająk, S., Durak, T. (2018). Plants reaction on the anatomical, physiological and molecular level for environmental global changes. Polish Journal for Sustainable Development, 22(1), 83–88. https://doi.org/10.15584/pjsd.2018.22.1.11

Pruszyński, S. (2009). Ochrona roślin w różnych systemach produkcji a różnorodność biologiczna. Progress in Plant Protection, 49(3), 1091–1101. [In Polish]

Pudelski, T. (1971). Uprawa ogórków w szklarniach na belach słomy. Ogród, 10, 306–308. [In Polish]

Scherer, H.W. (2001). Sulphur in crop production – invited paper. European Journal of Agronomy, 14(2), 81–111. https://doi.org/10.1016/S1161-0301(00)00082-4

Soleymani, A., Shahri, M. M., Shahrajabian, M. H., Naranjani, L. (2010). Responses of cultivars of canola to sulphur fertilizer and plant densities under climatic condition of Gorgan region, Iran. Journal of Food, Agriculture & Environment, 8(3/4 part 1), 298–304.

Szatanik-Kloc, A., Sokołowska, Z., Hrebelna, N. (2007). Effect of pH under Cd-stress on surface charge of barley (Hordeum vulgare L.). Acta Agrophysica, 10(2), 473–482. [In Polish]

Tao, L., Li, F., Liu, C., Feng, X., Gu, L., Wang, B., Wen, S., Xu, M. (2019). Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China. Catena, 174, 227–234. https://doi.org/10.1016/j.catena.2018.11.023

Thomas, S.G., Hocking, T.J., Bilsborrow, P.E. (2003). Effect of sulphur fertilization on growth and metabolism of sugar beet grown on soils of differing sulphur status. Field Crops Research, 83, 223–235. https://doi.org/10.1016/S0378-4290(03)00075-3

Tujak, A. (2006). Prognozowanie zużycia nawozów mineralnych w oparciu o wymagania nawozowe roślin. Nawozy i Nawożenie, 1, 186. [In Polish]

Vaughan, J.G., Geissler, C.A. (2001). Rośliny jadalne. Warszawa: Prószyński i S-ka. [In Polish]

Wójcik, P. (2014). Zrównoważone nawożenie roślin ogrodniczych. Skierniewice: Instytut Ogrodnictwa. [In Polish]

Downloads

Published

2019-12-31

How to Cite

Zandi, P., Możdżeń, K., Barabasz-Krasny, B., & Wang, . Y. . (2019). The role of magnesium salts in germination and growth of Cucumis sativus L. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 4(1), 119–131. https://doi.org/10.24917/25438832.4.7

Issue

Section

Experimental Biology

Most read articles by the same author(s)

1 2 > >>