Impact of water stress on physiological processes of moss Polytrichum piliferum Hedw.

Authors

  • Małgorzata Romańska Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland

DOI:

https://doi.org/10.24917/25438832.5.9

Keywords:

dark respiration, hypoxia, photosynthesis, Polytrichum piliferum, rehydration

Abstract

Mosses are convenient organisms for studying the reaction to water stress because they do not have an epidermis, which makes them more sensitive to changes in humidity than most other plants. The aim of the study was to determine the effect of water stress on the course of physiological processes of mosses using Polytrichum piliferum Hedw. The present study showed that the action of the abiotic stressor, which is water, adversely affects the photosynthesis and dark respiration processes by reducing their intensity. However, it is worth noting that the respiration process is less dependent on tissue hydration than the photosynthesis, which is clearly demonstrated by the study results. The bryophytes’ resistance to stress factors is responsible for the plant’s ability to maintain homeostasis under stress conditions. The ability to change homeostasis by adapting, surviving or overcoming adverse living conditions also plays an important role.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alpert, P., Oliver, M.J. (2002). Drying without dying. In: M. Black, H.W. Pritchard (eds.), Desiccation and survival in plants. Cambridge: Cambridge University Press, 3–31.

Bewley, J.D., Halmer, P., Krochko, J.E., Winner, W.E. (1978) Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. In: J.H. Crowe, J.S. Clegg (eds.), Dry Biological Systems. New York: Academic Press, pp. 185–203.

Bray, E.A. (1997). Plant response to water deficit. Trends in Plant Science, 2(2), 48–54. https://doi.org/10.1016/S1360-1385(97)82562-9

Fojcik, B. (2011). Mchy Wyżyny Krakowsko-Częstochowskiej w obliczu antropogenicznych przemian szaty roślinnej (Mosses of the Kraków-Częstochowa Upland in the face of anthropogenic changes in plant cover). Katowice: Wydawnictwo Uniwersytetu Śląskiego. [In Polish]

Franca, M.B., Panek, A.D., Eleutherio, E.C.A. (2007). Oxidative stress and its effects during dehydration. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 146, 621–631. https://doi.org/0.1016/j.cbpa.2006.02.030

Harmens, H., Norris, D.A., Cooper, D.M., Mills, G., Steinnes, E., Kubin, E., Thöni, L., Aboal, J.R., Alber, R., Carballeira, A., Coşkun, M., De Temmerman, L., Frolova, M., González-Miqueo, L., Jeran, Z., Leblond, S., Liiv, S., Maňkovská, B., Pesch, R., Poikolainen, J., Rühling, A., Santamaria, J.M., Simonèiè, P., Schröder, W., Suchara, I., Yurukova, L., Zechmeister, H.G. (2011). Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environmental Pollution, 159, 2852–2860. https://doi.org/10.1016/j.envpol.2011.04.041

Hoekstra, F.A., Golovina, E.A., Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends Plant Science, 6, 431–438. https://doi.org/10.1016/s1360-1385(01)02052-0

Karczmarz, K. (2000). Mszaki (Bryophyta). Flora i fauna Pienin (Brophytes (Bryophyta). Flora and Fauna of the Pieniny Mountains). Monografie Pienińskie, 1, 67–74. [In Polish]

Kopcewicz, J., Lewak, S. (2005). Fizjologia roślin (Plant physiology). Warszawa: PWN. [In Polish]

Kozlowski, T.T. (1984). Flooding and plant growth. USA: Springer.

Kozlowski, T.T., Pallardy, S.G. (1997). Physiological regulation of reproductive growth. Growth control in woody plants. USA: Elsevier.

Krupa, J. (1974). Struktura anatomiczna liści mszaków, a ich aktywność fizjologiczna (Anatomical structure of bryophytes leaves and their physiological activity). Kraków: Wydawnictwo Naukowe WSP Kraków. [In Polish]

Kula, M., Rut, G., Możdżeń, K., Stawoska, I., Oliwa, J., Skoczowski, A. (2018). Metabolic activity of Polytrichum commune Hedw. in a high concentration of ozone. Conference: XX ISBC Conference, International Society for Biological Calorimetry. Kraków: Poland.

Ligrone, R., Duckett, J.G. (1996). Polarity and endoplasmic microtubules in food-conducting cells of mosses: an experimental study. New Phytologist, 134, 503–516.

Ligrone, R., Duckett, J.G. (1998). The leafy stems of Sphagnum (Bryophyta) contain highly differentiated polarized cells with axial arrays of endoplasmic microtubules. New Phytologist, 140, 567–579.

Lou, H.X. (2006). Chemistry and biology of bryophytes. Beijing: Beijing Science and Technology Press. [In Chinese]

Martim, S.A., Santos, M.P., Peçanha, A.L., Pommer, C., Campostrini, E., Viana, P.A., Façanha, A.R., Bressan-Smith, R. (2009). Photosynthesis and cell respiration modulated by water deficit in grapevine (Vitis vinifera L.) cv. Cabernet Sauvignon. Brazilian Journal of Plant Physiology, 21(2). https://doi.org/10.1590/S1677-04202009000200002

McDaniel, S.F., Willis, J.H., Shaw, A.J. (2007). A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics, 176, 2489–2500. https://doi.org/10.1534/genetics.107.075424

McElrone, A.J., Choat, B., Gambetta, G.A., Brodersen, C.R. (2013). Water uptake and transport in vascular plants. Nature Education Knowledge, 4(5), 6.

Możdżeń, K. (2019). Wpływ składu spektralnego światła na wybrane procesy fizjologiczne mchów w warunkach stresu ozonowego (Impact of the spectral composition of light on selected physiological processes of mosses under ozone stress). Kraków: Wydawnictwo Naukowe UP. [In Polish]

Możdżeń, K., Skoczowski, A. (2016). Ozon wpływa na fluorescencję niebiesko-zieloną i czerwoną listków Polytrichastrum formosum niezależnie od składu spektralnego światła (Ozone influences the blue-green and red fluorescence of Polytrichastrum formosum leaves regardless of the spectral composition of the light). Conference: 57 Zjazd Polskiego Towarzystwa Botanicznego "Botanika – tradycja i nowoczesność". Lublin: Polska. [In Polish]

Osakabe, Y., Osakabe, K., Shinozaki, K., Tran L.-S.P. (2014). Response of plants to water stress. Frontiers Plant Science – Plant Physiology, 5, 86. https://doi.org/10.3389/fpls.2014.00086

Platt, K.A., Oliver, M., Thomson, W.W. (1993). Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity freeze-fracture evidence. Plant Physiology, 102, 89–90. https://doi.org/10.1007/BF01404121

Polytrichum piliferum Hedw. (= Polytrichastrum piliferum Hedw.): https://atlas.roslin.pl/plant/9498

Pressel, S., Ligrone, R., Duckett, J.G. (2006). Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Annals of Botany, 98, 67–76. https://doi.org/10.1093/aob/mcl092

Proctor, M. (2001). Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regulations, 35, 147–156. https://doi.org/10.1023/A:1014429720821

Proctor, M.C.F. (2000). Mosses and alternative adaptation to life on land. New Phytologist, 148, 1–3. https://doi.org/10.1111/j.1469-8137.2000.00751.x

Proctor, M.C.F., Ligrone, R., Duckett, J.G. (2007). Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Annals of Botany, 99, 75–93. https://doi.org/10.1093/aob/mcl246

Rock, C.D., Sakata, Y., Quatrano, R.S. (2009). The role of abscisic acid. In: A. Pareek, S.K. Sopory, H.J. Bohnert, Govindjee (eds.), Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Dordrecht: Springer.

Ruibal, C., SalamóI, P., Carballo, V., Castro, A., Bentancor, M., Borsani, O., Szabados, L., Vidal, S. (2012). Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. Plant Science, 190, 89–102. https://doi.org/10.1016/j.plantsci.2012.03.009

Rzepka, A. (1990). Zależność natężenia wymiany gazowej gametoforów i sporogonów wybranych gatunków mchów w zależności od stężenia CO2 (The relationship between the intensity of gas exchange of gametophores and sporogons of selected moss species depending on the concentration of CO2). Zeszyt Badań Tarnobrzeskich PAN, 38–65. [In Polish]

Rzepka, A. (2008). Ekofizjologiczne aspekty reakcji różnych gatunków mchów na abiotyczne czynniki stresowe (Ecophysiological aspects of the response of various moss species to abiotic stress factors). Kraków: Wydawnictwo Naukowe WSP Kraków. [In Polish]

Rzepka, A., Krupa, J. (1996). Responses of moss gametophytes to an elevated concentration of CO2. In: S. Grzesiak, Z. Miszalski (eds.), Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych. Kraków: Zakład Fizjologii Roślin im. Franciszka Górskiego PAN, 359–361. [In Polish]

Rzepka, A., Krupa, J., Rut, G. (2001). The influence of anaerobic conditions on the respiration of moss gametophores in the darkness. Acta Physiologiae Plantarum, 23(3), 90–91.

Rzepka, A., Krupa, J., Ślesak, I. (2003). Hypoxia and photosynthetic activity in relation to identification of chosen elements of the antioxidative system in leaves of Mnium undulatum. Polish Journal of Natural Sciences, (1 Supplement), 94–95. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego.

Rzepka, A., Krupa, J., Ślesak, I. (2005). Effect of hypoxia on photosynthetic activity and antioxidative response in gametophores of Mnium undulatum. Acta Physiologiae Plantarum, 27(2), 205–212. https://doi.org/10.1007/s11738-005-0024-4

Schröder, W., Pesch, R., Schönrock, S., Harmens, H., Mills, G., Fagerli, H. (2014). Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecological Indicators, 36, 563–571. https://doi.org/10.1016/j.ecolind.2013.09.013

Silva, H., Sagardia, S., Ortiz, M., Franck, N., Opazo, M., Quiroz, M., Baginsky C., Tapia, C. (2014). Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability. Revista chilena de historia natural, 87. https://doi.org/10.1186/S40693-014-0013-3

Sołtys-Lelek, A., Barabasz-Krasny, B., Możdżeń, K., Caputa, Z., Rzepka, A. (2018). The influence of solar radiation in karst conditions of the spring niches of the Ojców National Park (Southern Poland) on selected physiological processes of mosses. 11th International Conference “Plant functioning under environmental stress”. Kraków: Poland.

Szafran, B. (1948). Klucz do oznaczania najpospolitszych mszaków i paprotników (The key to marking the most common bryophytes and ferns). Warszawa: Państwowe Zakłady Wydawnictw Szkolnych, p. 32–33. [In Polish]

Trouiller, B., Charlot, F., Choinard, S., Schaefer, D.G., Nogue, F. (2007). Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of Bryophyte transformation. Biotechnology Letters, 29, 1591–1598. https://doi.org/10.1007/s10529-007-9423-5

Wójciak, H. (2003). Porosty, mszaki i paprotniki (Lichens, bryophytes and ferns). Warszawa: MULTICO. [In Polish]

Zeng, O., Chen, X.B., Wood, A.J. (2002). Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. Journal of Experimental Botany, 53, 1197–1205. https://doi.org/10.1093/jexbot/53.371.1197

Zhou, X.B., Zhang, Y.M., Ji, X.H., Downing, A., Serpe, M. (2011). Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environmental and Experimental Botany, 74, 1–8. DOI: 10.1016/j.envexpbot.2010.12.005

Downloads

Published

2020-11-12

How to Cite

Romańska, M. (2020). Impact of water stress on physiological processes of moss Polytrichum piliferum Hedw. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 5, 129–141. https://doi.org/10.24917/25438832.5.9

Issue

Section

Experimental Biology