Baltic macroalgae as a potential source for commercial applications – review

Authors

  • Sylwia Śliwińska-Wilczewska Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland https://orcid.org/0000-0002-3147-6605
  • Gracjana Budzałek Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Zuzanna Kowalska Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Marek Klin Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Adam Latała Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland

DOI:

https://doi.org/10.24917/25438832.5.14

Keywords:

Baltic macroalgae, Baltic Sea, bioactive compounds, biomass, industrial resources

Abstract

Morze Bałtyckie jest wyjątkowym ekosystemem wodnym, charakteryzującym się wyraźnymi zmianami w środowisku, szczególnie w odniesieniu do zasolenia i klimatu. Jest to także miejsce występowania morskich i słodkowodnych organizmów roślinnych, które od stuleci fascynują naukowców. Niewiele jest jednak prac prezentujących bałtyckie glony makroskopowe, jako potencjalne źródło dla zastosowań komercyjnych. Celem niniejszego opracowania było przedstawienie bałtyckich makroglonów, jako źródła zasobów przemysłowych. W przeglądzie uwzględniono, m.in. potencjał wykorzystania tych organizmów w przemyśle kosmetycznym i medycznym, w tym najważniejsze składniki, które czynią je cennym produktem spożywczym. Zwrócono także uwagę na ich rosnącą popularność i potencjalne wykorzystanie w przyszłości, np. jako biopaliwa, nawozy naturalne lub składniki oczyszczalni ścieków. Przedstawiono także możliwość wykorzystania makroglonów jako biologicznego czynnika, ograniczającego występowanie masowych zakwitów sinic w Morzu Bałtyckim.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bedoux, G., Hardouin, K., Burlot, A.S., Bourgougnon, N. (2014). Bioactive components from seaweeds: Cosmetic applications and future development. In: N. Bourgougnon (ed.), Advances in Botanical Research, 71, 345–378. Academic Press. https://doi.org/10.1016/B978-0-12-408062-1.00012-3

Berger, J., Schagerl, M. (2003). Allelopathic activity of Chara aspera. Hydrobiologia, 501(1–3), 109–115. https://doi.org/10.1023/A:1026263504260

Biłos, Ł., Golla, S., Patyna, A. (2016). Wykorzystanie glonów w rolnictwie i przemyśle spożywczym (The use of algae in agriculture and the food industry). Przemysł Chemiczny, 95(9), 1797–1801. [In Polish]

Buchholz, C.M., Krause, G., Buck, B.H. (2012). Seaweed and man. In: Wiencke C., Bischof K. (eds.), Seaweed Biology, 471–493. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-28451-9_22

Deluga, W. (2018). The role of ecological marketing in preserving the purity of wasters of the Baltic Sea. Folia Pomeranae Universitatis Technologiae Stetinensis. Oeconomica, 346(92), 5–16. https://doi.org/10.21005/oe.2018.92.3.01 [In Polish]

Dominguez, H., Loret, E.P. (2019). Ulva lactuca, a source of troubles and potential riches. Marine Drugs, 17(6), 357. https://doi.org/10.3390/md17060357

Duke, S.O., Scheffler, B.E., Dayan, F.E. (2001). Allelochemicals as herbicides, in physiological aspects of allelopathy. In: M.J. Reigosa, N.P. Bonjoch (eds.), First European OECD Allelopathy Symposium, Vigo, Spain, pp. 47–59.

Filipkowska, A., Lubecki, L., Szymczak-Zyla, M., Kowalewska, G., Zbikowski, R., Szefer, P. (2008). Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia, 50(2), 255–273.

Filipkowska, A., Lubecki, L., Szymczak-Zyla, M., Lotocka, M., Kowalewska, G. (2009). Factors affecting the occurrence of algae on the Sopot beach (Baltic Sea). Oceanologia, 51(2), 233–262.

Fitzgerald, C., Gallagher, E., Tasdemir, D., Hayes, M. (2011). Heart health peptides from macroalgae and their potential use in functional foods. Journal of Agricultural and Food Chemistry, 59(13), 6829–6836. https://doi.org/10.1021/jf201114d

Ghobrial, M.G., Nassr, H.S., Kamil, A.W. (2015). Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes. The Egyptian Journal of Aquatic Research, 41(1), 69–81. https://doi.org/10.1016/j.ejar.2015.01.001

Granéli, E., Hansen, P.J. (2006). Allelopathy in harmful algae: a mechanism to compete for resources? In: E. Granéli, J.T. Turner (eds.), Ecology of Harmful Algae, Ecological Studies. 189 Berlin Heidelberg, Germany: Springer-Verlag, p. 189–201.

Gupta, S., Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology, 22(6), 315–326. https://doi.org/10.1016/j.tifs.2011.03.011

HELCOM (2012). Development of a set of core indicators: interim report of the HELCOM CORESET project. Part B: Descriptions of the indicators. Baltic Sea Environment Proceedings, 129B, 1–219.

Hilt, S., Gross, E.M. (2008). Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology, 9(4), 422–432. https://doi.org/10.1016/j.baae.2007.04.003

Huppatz, J.L. (1996). Quantifying the inhibitor-target site interactions of photosystem II herbicides. Weed Science, 44, 743–748. https://doi.org/10.1017/S0043174500094625

Kandale, A., Meena, A.K., Rao, M.M., Panda, P., Mangal, A.K., Reddy, G., Babu, R. (2011). Marine algae: an introduction, food value and medicinal uses. Journal of Pharmacy Research, 4(1), 219–221.

Kolb, N., Vallorani, L., Milanović, N., Stocchi, V. (2004). Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food Technology and Biotechnology, 42(1), 57–61.

McHugh, D.J. (2003). A guide to the seaweed industry. FAO Fish Tech Pap 441, Rome, Italy, pp. 105.

McLachlan, J. (1985). Macroalgae (seaweeds): industrial resources and their utilization. In: J. Mclachlan (ed.), Biosalinity in Action: Bioproduction with Saline Water. Plant and Soil, 89(1/3), 137–157. Dordrecht: Springer.

Milledge, J.J., Nielsen, B.V., Bailey, D. (2015). High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Reviews in Environmental Science and Bio/Technology, 15(1), 67–88.

Milledge, J.J., Smith, B., Dyer, P.W., Harvey, P. (2014). Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies, 7(11), 7194–7222. https://doi.org/10.3390/en7117194

Mohy El Din, S.M. (2015). Utilization of seaweed extracts as bio-fertilizers to stimulate the growth of wheat seedlings. The Egyptian Journal of Experimental Biology (Botany), 11(1), 31–39.

Nyberg, E. (2007). Introduced marine macroalgae and habitat modifiers – their ecological role and significant attributes. Göteborg University, pp. 61 [PhD Thesis].

Ohad, N., Hirschberg, J. (1990). A similar structure of the herbicide binding site in photosystem II of plants and cyanobacteria is demonstrated by site specific mutagenesis of the psbA gene. Photosynthesis Research, 23, 73–79. https://doi.org/10.1007/BF00030065

Pakdel, F.M., Sim, L., Beardall, J., Davis, J. (2013). Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquatic Botany, 110, 2–30. https://doi.org/10.1016/j.aquabot.2013.04.005

Roesijadi, G., Jones, S.B., Snowden-Swan, L.J., Zhu, Y. (2010). Macroalgae as a biomass feedstock: a preliminary analysis (No. PNNL-19944). Pacific Northwest National Lab.(PNNL), Richland, WA (United States). https://doi.org/0.2172/1006310

Rybak, A.S. (2016). Freshwater population of Ulva flexuosa (Ulvaceae, Chlorophyta) as a food source for great pond snail: Lymnaea stagnalis (Mollusca, Lymnaeidae). Phycological Research, 64(4), 207–211. https://doi.org/10.1111/pre.12138

Rybak, A.S. (2018). Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecological Indicators, 85, 253–261. https://doi.org/10.1016/j.ecolind.2017.10.061

Rybak, A.S., Gąbka, M. (2018). The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems. Journal of Applied Phycology, 30(2), 1405–1416. https://doi.org/10.1007/s10811-017-1301-5

Saniewski, M. (2013). Roślinność bentosowa jako indykator stanu środowiska Morza Bałtyckiego (Benthic vegetation as an indicator of the state of the Baltic Sea environment). Polish Hyperbaric Research, 1(42), 83–102. [In Polish]

Schroeder, G., Messyasz, B., Łęska, B., Fabrowska, J., Pikosz, M., Rybak, A.S. (2013). Biomasa alg słodkowodnych surowcem dla przemysłu i rolnictwa (Biomass of freshwater algae as raw material for the industry and agriculture). Przemysł Chemiczny, 92(7), 1380–1384. [In Polish]

Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (2017). Biological oceanography of the Baltic Sea. Switzerland: Springer Science & Business Media.

Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026

Tang, Y.Z., Gobler, C.J. (2011). The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae, 10(5), 480–488. https://doi.org/10.1016/j.hal.2011.03.003

van Donk, E., van de Bund, W.J. (2002). Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany, 72, 261–274. https://doi.org/10.1016/S0304-3770(01)00205-4

Wærn, M. (1965). A vista on the marine vegetation. Acta Phytogeographica Suecica, 50, 13–27.

Wang, H.M.D., Chen, C.C., Huynh, P., Chang, J.S. (2014). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. https://doi.org/10.1016/j.biortech.2014.12.001

Wang, R., Xiao, H., Zhang, P., Qu, L., Cai, H., Tang, X., (2007). Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. Journal of Applied Phycology, 19(2), 109–121. https://doi.org/10.1007/s10811-006-9117-18

Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith A.G, Camire, M.E. Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949–982. https://doi.org/10.1007/s10811-016-0974-5

Żbikowski, R., Szefer, P., Latała, A. (2006). Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environmental Pollution, 143(3), 435–448. https://doi.org/10.1016/j.envpol.2005.12.007

Żbikowski, R., Szefer, P., Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Science of the Total Environment, 387(1–3), 320–332. https://doi.org/10.1016/j.scitotenv.2007.07.017

Złoch, I., Śliwińska-Wilczewska, S., Kucharska, M., Kozłowska, W. (2018). Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp. Environmental Science and Pollution Research, 25(36), 36403–36411. https://doi.org/10.1007/s11356-018-3579-5

Downloads

Published

2020-11-12

How to Cite

Śliwińska-Wilczewska, S. ., Budzałek, G. ., Kowalska, Z. ., Klin, M. ., & Latała, A. (2020). Baltic macroalgae as a potential source for commercial applications – review. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 5, 220–237. https://doi.org/10.24917/25438832.5.14

Issue

Section

Various

Most read articles by the same author(s)