Resistance of mosses to drying, measured by the intensity of gas exchange and the content of malate and citrate


  • Andrzej Rzepka Department of Plant Physiology, Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
  • Wioleta Szarek


enzymatic activity, photosynthesis, respiration, dehydration and rehydration


Desiccation tolerance, the ability to lose virtually all of its free intracellular water and then restore normal function when rehydrated, is one of the most remarkable features of bryophytes. The aim of the study was to determine the resistance of two species of Plagiomnium undulatum (Hedw.) T.J.Kop. and Polytrichum commune Hedw. on drying to 50% relative water content of the air and rehydration. Changes in the intensity of photosynthesis and respiration as well as the content of malate and citrate in leafy moss stems were analysed. P. commune gametophores showed greater resistance to drought stress than P. undulatum. In both species, photosynthesis was much more sensitive to drought than respiration. Changes in the content of malate and citrate indicated a high plasticity of moss metabolism in conditions of water shortage and may be one of many important elements of the adaptation strategy to water deficit. The reactions of the tested mosses to dehydration and rehydration confirmed their adaptation to specific land conditions.


Download data is not yet available.


Metrics Loading ...


Alpert, P. (2000). The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecology, 151, 5–17.

Alpert, P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? Journal of Experimental Biology, 209, 1575–1584.

Alpert, P., Oliver, M.J. (2002). Drying without dying. In: M. Black, H. Pritchard (eds.), Desiccation and survival in plants: drying without dying. Wallingford: CAB International Press, p. 3–46.

Bewley, J.D., Halmer, P., Krochko, J.E., Winner, W.E. (1978). Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. In: J.H. Crowe, J.S Clegg. (eds.), Dry Biological Systems. New York: Academic Press, pp. 185–203.

Bewley, J.D., Reynolds, T.L., Oliver, M.J. (1993). Evolving strategies in the adaptation to desiccation. In: T.J. Close, E.A. Bray (eds.), Plant Responses to Cellular Dehydration during Environmental Stress. USA: Rockville, MD: American Society of Plant Physiologists, p. 193–201.

Brinda, J.C., Stark, L.R., Clark, T.A., Greenwood, J.L. (2016). Embryos of a moss can be hardened to desiccation tolerance: effects of rate of drying on the timeline of recovery and dehardening in Aloina ambigua (Pottiaceae). Annals of Botany, 117, 153–163. doi:10.1093/aob/mcv136. PMID:26354931.

Charron, A.J., Quatrano, R.S. (2009). Between a rock and a dry place: the water-stressed moss. Molecular Plant, 2(3), 478–486.

Chojnacka-Ożga, L., Lorenc, H. (2019). Współczesne problemy klimatu Polski (Contemporary problems of the Polish climate). Warszawa: Instytut Meteorologii i Gospodarki Wodnej, Państwowy Instytut Badawczy 260 p. [In Polish]

De Carvalho, R.C., Da Silva, A.B., Soares, R., Almeida, A.M., Coelho, A.V., Da Silva J.M., Branquinho, C. (2014). Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. Plant Cell and Environment, 37(7), 1499–1515.

Düll, R., Düll-Wunder, B. (2012). Moose einfach und sicher bestimmen. Die wichtigsten mitteleuropäischen Arten im Porträt. Quelle and Meyer, p. 333. [In German]

Green, T.G.A., Sancho, L.G., Pintado, A. 2011. Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In Plant desiccation tolerance. Edited by U. Luttge, E. Beck, and D. Bartels. Ecological Studies 215, Springer-Verlag, Berlin. pp. 89–120.

Green, T.G.A., Sancho, L.G., Pintado, A. (2011). Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: U. Luttge, E. Beck, D. Bartels (eds.), Plant Desiccation Tolerance, Ecological Studies 215, Part 2, p. 89–120. Berlin Heidelberg: Springer-Verlag.

Ignatov, M.S., Ignatova, E.A. (2003). Flora mchow srjedniej czasti jewropiejskoj Rassij (Moss flora of the Middle European Russia). Sphagnaceae – Hedwigiaceae. Vol. 1. Moscow, p. 110. [In Russian]

Krupa, J. (1974). Struktura anatomiczna liści mchów a ich aktywność fizjologiczna (Anatomical structure of moss leaves and their physiological activity). Kraków: Wydawnictwo Naukowe WSP, p. 5–21. [In Polish]

Li, J., Li, X., Chen, C. (2014). Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration. Bryologist, 117, 110–118.

Mayaba, N., Beckett, R.P., Csintalan, Z., Tuba, Z. (2001). ABA increases the desiccation tolerance of photosynthesis in the Afromontane understory moss. Atrichum androgynum. Annals of Botany, 86, 1093–1100.

Möllering, H. (1985). L-(-)-malate. In: H.U. Bergmeyer (ed.), Methods of enzymatic analysis. 3rd Vol. 7.1. Weinheim: VHC Verlagsgesellschaft, p. 39–47.

Możdżeń, K. (2019). Wpływ składu spektralnego światła na wybrane procesy fizjologiczne mchów w warunkach stresu ozonowego (Impact of the spectral composition of light on selected physiological processes of mosses under ozone stress). Kraków: Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, 127 s. [In Polish]

Oliver, M.J. (2009). Biochemical and molecular mechanisms of desiccation tolerance in bryophytes. In: B. Goffinet, J. Shaw (eds.), Bryophyte biology. Cambridge University Press, New York, pp. 269–298.

Oliver, M.J., Velten, J., Mishler, B.D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology, 45, 788–799.

Plagiomnium undulatum leaf.,_144543-474730)_8010.JPG

Plášek, V. (2013). Mszaki w lasach. Przewodnik terenowy dla leśników i taksatorów (Bryophytes in forests. Field guide for foresters and valuers) Warszawa: Centrum Informacyjne Lasy Państwowe, ss. 134. [In Polish]

Polytrichum commune assimilations lamellen.

Pressel, S., Ligrone, R., Duckett, J.G. (2006). The effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum Hedw.: a cytological study. Annals of Botany, 98, 67–76.

Proctor, M.C.F. (1990). The physiological basis of bryophyte production. Botanical Journal of the Linnean Society, 104, 61–77.

Proctor, M.C.F., Olivier, M.J., Wood, A.J., Aleprt, P., Stark, L.R., Cleavitt, N.L., Mishler, B.D. (2007). Desiccation-tolerance in bryophytes: a review. The Bryologist, 110(4), 595–621.[595:DIBAR]2.0.CO;2

Proctor, M.C.F., Pence, V.C. (2002). Vegetative tissues: bryophytes, vascular resurrection plants, and vegetative propagules. In: M. Black, H.W. Pritchard (eds.), Desiccation and survival in plants: Drying without dying. Oxon: CABI Publishing, Wallingford, pp. 207–237.

Romańska, M. (2020). Impact of water stress on physiological processes of moss Polytrichum piliferum Hedw. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 5, 129–141.

Rut, G., Rzepka, A., Krupa, J. (2010). Effect of hypoxia and post-hypoxia on the fluctuations in contents of malate and citrate, the activity of malic enzyme, and on the intensity of gas exchange in moss gametophores. Photosynthetica, 48, 79–86 (2010).

Rzepka, A. (2008). Ekofizjologiczne aspekty reakcji różnych gatunków mchów na abiotyczne czynniki stresowe (Ecophysiological aspects of the response of various moss species to abiotic stress factors). Kraków: Wydawnictwo Naukowe Akademii Pedagogicznej w Krakowie, 92 p. [In Polish]

Rzepka, A., Krupa, J. (2008). Ca2+ reduces the effect of hypoxia in mosses Mnium undulatum and Polytrichum commune. Biologia Plantarum, 52, 740.

Rzepka, A., Krupa, J., Ślesak, I. (2005). Effect of hypoxia on photosynthetic activity and antioxidative response in gametophores of Mnium undulatum. Acta Physiologiae Plantarum, 27(2), 205–212.

Stark, L.R., Brinda, J.C. (2015). Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness. Annals of Botany, 115, 593–603. doi:10.1093/ aob/mcu252. PMID:25578378

Stark, L.R., Greenwood, J.L., Slate, M.L., Brinda, J.C. (2017). Syntrichia norvegica shoots exhibit a complex inducible response to desiccation: separating the effects of rate of drying and water content. Botany, 95(5), 481–491.

Szafran, B. (1961). Mchy (Musci). Tom I. Warszawa: Wydawnictwo PWN, s. 390. [In Polish]

Szafran, B. (1963). Flora słodkowodna Polski (Freshwater flora of Poland). Tom 16. In: K. Starmach (ed.), Musci-Mchy. Warszawa: Wydawnictwo PWN, p. 9–16, 64. [In Polish]

Tuba, Z., Proctor, M.C.F., Csintalan, Z. (1998). Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: A comparison and an ecological perspective. Plant Growth Regulation, 19(24), 211–217.

Vitt, D.H., Crandall-Stotler, B., Wood, A. (2014). Survival in a dry world through avoidance and tolerance. In: N. Rajakaruna, R. Boyd, T. Harris (eds.), Plant ecology and evolution in harsh environments, p. 267–295. New York: Nova Publishers.

Wood, A.J. (2007). The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist, 110, 163–177.[163:IENFIB]2.0.CO;2

Zheng, Y., Xu, M., Zhao, J., Zhang B., Bei, S., Hao, L. (2011). Morphological adaptations to drought and reproductive strategy of the moss Syntrichia caninervis in the Gurbantunggut Desert, China. Arid Land Research Management, 25, 116–127.




How to Cite

Rzepka, A., & Szarek, W. (2021). Resistance of mosses to drying, measured by the intensity of gas exchange and the content of malate and citrate. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 6, xxx. Retrieved from



Experimental Biology