The influence of solar radiation on selected physiological processes of mosses in karst conditions of the spring niches of the Ojców National Park (Southern Poland)

.

Authors

  • Anna Sołtys-Lelek Ojców National Park, Ojców 9, 32-045 Sułoszowa, Poland
  • Zbigniew Caputa A. Ficka St. 4/1, 40-421 Katowice, Poland

Keywords:

albedo, biomass, Brachythecium rivulare Schimp., Cratoneuron filicinum (Hedw.), chlorophyll a fluorescence, electrolyte leakage, net all-wave radiation

Abstract

The availability of light is one of the most important environmental factors influencing the floristic diversity of spring niches, especially in the specific conditions of deep, karst valleys occurring in the Ojców National Park (southern Poland). The aim of this study was to investigate the influence of solar radiation reaching the karst spring niches, on selected physiological parameters of the spring mosses: Cratoneuron filicinum (Hedw.) Spruce (obligatory krenophyte) and Brachythecium rivulare Schimp. (facultative krenophyte). The five karst spring niches (4 in the Prądnik Valley, 1 in the Sąspowska Valley) were selected for the plant material collection, in which two of the moss species tested occurred simultaneously. On sunny days, measurements of total and reflected radiation as well as the radiation balance in the full spectrum range over the vegetation were made. The temperature was measured for air, water, and on the surface and inside the plants. The collected biological material was subjected to laboratory analysis. Fresh mass of moss gametophytes was significantly the highest from plants growing on stand 5 (intermediate values of light and temperature parameters), and the lowest from mosses on stands 1 and 2 (including lowest air temperatures). Dry mass varied depending on the species and stand. The percentage of water in B. rivulare was highest in plants from  stand 4 (highest air and water temperature), and in C. filicinum from stand 5. Significantly the lowest values of this parameter were found for plants growing in stand 2 (lowest temperature of water). The electrolytes leakage from moss cells was specific and depended on the species. The greatest destabilisation of cell membranes was demonstrated in plants harvested from stands 1 and 2, where it was the coldest. The fluorescence of chlorophyll a varied depending on the moss species and the habitat of spring niches. This paper, presenting of preliminary results, is a kind of introduction to wider research in this topic

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aleksandrowisz, S.W., Wilk, Z. (1962). Geological structure and springs of the Prądnik valley in the Ojców National Park (Budowa geologiczna i źródła doliny Prądnika w Ojcowskim Parku Narodowym). Ochrona Przyrody, 28, 187–210. [In Polish]

Alpert, P., Oechel, W.C. (1987). Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions. American Journal of Botany, 74, 1787–1796.

Bárány-Keve, I. (2011). Changes in the vegetation of dolines in Aggtelek and Bükk mountains. Acta Climatologica et Chorologica Universitatis Szegediensis, 44–45, 25–30.

Bolhàr-Nordenkampf, H.R., Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. In: D.O., Hall, J.M.O., Scurlock, H.R., Bolhàr-Nordenkampf, R.C., Leegood, S.P., Long (eds.), Photosynthesis and production in a changing environment. Dordrecht: Springer. https://doi.org/10.1007/978-94-011-1566-7_12

Brzeźniak, E. (1974). General characteristics of microclimatic conditions in the vicinity of Ojców National Park (Ogólna charakterystyka warunków mikroklimatycznych w okolicy Ojcowskiego Parku Narodowego). In K. Zabierowski (ed.), Rozmieszczenie przestrzenne i struktura leśnych pasów ochronnych wokół Ojcowskiego Parku Narodowego. Kraków: Zakład Ochrony Przyrody PAN, ss 35. [In Polish]

Brzeźnik, E., Partyka, J. (2008). Climatic conditions of the Ojców National Park (Warunki klimatyczne Ojcowskiego Parku Narodowego). In A., Klasa, J., Partyka (eds.), Monografia Ojcowskiego Parku Narodowego, Przyroda, 121–136. [In Polish]

Caputa, Z. (2009). Meso- and microclimatic contrasts in the Ojców National Park (Kontrasty mezo- i mikroklimatyczne w Ojcowskim Parku Narodowym). Prądnik Prace i Materiały Muzeum im. Prof. Władysława Szafera, 19, 195–218. [In Polish]

Caputa, Z., Wojkowski, J. (2013). Influence of solar radiation on air and soil temperature in the Cracow Upland. Prądnik Prace i Materiały Muzeum im. Prof. Władysława Szafera, 23, 65–74. [In Polish]

Caputa, Z., Wojkowski, J. (2015). Structure of radiation balance in diverse types of relief. Annals of Warsaw University of Life Sciences, 47(4), 343–354.

Ciu, X., Gu, S., Wu, J., Tang, Y. (2008). Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau. Ecological Research, 24(3), 645–653. https://doi.org/10.1007/s11284-008-0535-8

Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A., Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259–1270. https://doi.org/10.1093/jxb/eru004

Demmig-Adams, B., Garab, G., Adams III, W.W., Govindgee (2014). Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, Advances in Photosynthesis and Respiration 40. Netherlands: Springer Science+Business Media Dordrecht.

Dikaios, I., Schiphorst, C.H., Dall’Osto, L., Alboresi, A., Bassi, R., Pinnola, A. (2019). Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Photosynthesis Research, 142, 249–264. https://doi.org/10.1007/s11120-019-00656-3

Duckett, J.G., Renzaglia, K.S. (1988). Ultrastructure and development of plastids in bryophytes. Advances in Bryology, 3, 33–93.

Dynowska, I. (1983). Springs of the Kraków-Wieluń Upland and Miechowska (Źródła Wyżyny Krakowsko-Wieluńskiej i Miechowskiej). Studia Ośrodka Dokumentacji Fizjograficznej, 11, 62–71. [In Polish]

Glime, J.M. (2017). Light: effects of high intensity. In: J.M., Glime (ed.), Bryophyte ecology. Physiological Ecology, 1, 931–9327.

Gradziński, M., Grzdziński, R., Jach, R. (2008). Geology, sculpture and karst phenomena in the Ojców area (Geologia, rzeźba i zjawiska krasowe okolic Ojcowa). In A., Klasa, J., Partyka (eds.), Monografia Ojcowskiego Parku Narodowego, Przyroda, 31–95. [In Polish]

Jusik, S. (2012). Klucz do oznaczania mchów i wątrobowców wodnych dla potrzeb oceny stanu ekologicznego wód powierzchniowych w Polsce (The key to the determination of mosses and aquatic liverworts for the purposes of assessing the ecological status of surface waters in Poland). Warszawa: Inspekcja Ochrony Środowiska.

Kallio, P., Heinonen, S. (1975). CO2 exchange and growth of Rhacomitrium lanuginosum and Dicranum elongatum In: F.E., Wiegolaski (ed.), Fennoscandian Tundra Ecosystems. Ecological Studies (Analysis and Synthesis), vol 16. Berlin: Heidelberg: Springer. https://doi.org/10.1007/978-3-642-80937-8_16

Klein, J. (1974). Meso- and microclimate of the Ojców National Park (Mezo- i mikorlimat Ojcowskiego Parku Narodowego). Studia Naturae, ser. A, 8, 1–155. [In Polish]

Kocheva, K.V., Georgiev, G.I., Kochev, V.K. (2014). An improvement of the diffusion model for assess-ment of drought stress in plants tissues. Physiologia Plantarum, 150, 88–94. https://doi.org/10.1111/ppl.12074

Krupa, J. (1974). Struktura anatomiczna liści mszaków, a ich aktywność fizjologiczna (Anatomical structure of bryophytes leaves and their physiological activity). Kraków: Wydawnictwo Naukowe WSP Kraków. [In Polish]

Lappalainen, L.M., Huttunen, S., Suokanerva, H. (2008). Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biology, 14, 321–333. https://doi.org/10.1111/j.1365-2486.2007.01489.x

Lichtenthaler, H., Buschmann, C., Rinderle, U., Schmuck, G. (1986). Application of chlorophyll fluorescence in ecophysiology. Radiation and Environmental Biophysic, 25, 297–308. https://doi.org/10.1007/BF01214643

Lovelock, C.E., Robinsn, S.A. (2002). Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell and Environment, 25(10), 1239–1250. https://doi.org/10.1046/j.1365-3040.2002.00916.x

Marschall, M., Proctor, M.C.F. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 94, 593–603. https://dx.doi.org/10.1093%2Faob%2Fmch178

Miyata, K.H., Nakaji, M., Raj Kanel, D., Terashima, I. (2015). Rate constants of PSII photoinhibition and its repair, and PSII fluorescence parameters in the field plants in relation to their growth light environments. Plant and Cell Physiology, 56(9), 1841–1854. https://doi.org/10.1093/pcp/pcv107

Możdżeń, K. (2019). Impact of the spectral composition of light on selected physiological processes of mosses under ozone stress (Wpływ składu spektralnego światła na wybrane procesy fizjologiczne mchów w warunkach stresu ozonowego). Kraków: Wydawnictwo Naukowe UP. [In Polish]

Możdżeń, K., Saja, D., Ryś, M., Skoczowski, A. (2014). Impact of light spectral composition on the length and weight of the gametophyte of Polytrichastrum formosum (Hedw.) G.L. Smith, Plagiomnium cuspidatum (Hedw.) T.J. Kop. and Pleurozium schreberi (Brid.) Mitt. Modern Phytomorphology, 5, 73–78. http://doi.org/10.5281/zenodo.161007

Murray, K.J., Tenhunen, J.D., Nowak, R.S. (1993). Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia, 96, 200–207. https://doi.org/10.1007/BF00317733

Nasrulhaq-Boyce, A., Duckett, J.G. (1991). Dimorphic epidermal cell chloroplasts in the mesophyll-less leaves of an extreme-shade tropical fern. New Phytologist, 119, 433–444. https://doi.org/10.1111/j.1469-8137.1991.tb00044.x

Niinemets, U., Niinemets, M. (2009). Acclimation of photosynthetic characteristics of the moss Pleurozium scherberi to among-habitat and within-canopy light gradients. Plant Biology, 1–13. https://doi.org/10.1111/j.1438-8677.2009.00285.x

Niinemets, U., Niinemets, M. (2014). Scaling light harvesting from moss “leaves” to canopies. Chapter 9 In D.T., Hanson, S.K., Rice (eds.), Photosynthesis in Bryophytes and early land plants, 37, 151–171.

Öpik, H., Rolfe, S. (2005). The physiology of flowering plants. Cambridge, UK: Cambridge University Press, 4th edition, s. 246–269.

Pawlik, O. (1998). Selected hydrological problems of the Ojców National Park area (Wybrane problemy hydrologiczne rejonu Ojcowskiego Parku Narodowego). Praca magisterska. Sosnowiec: Uniwersytet Śląski, Katedra Geomorfologii, 245 ss. [In Polish]

Pilarski, J., Tokarz, K., Kocurek, M. (2012). Plant adaptation to light spectra composition and intensity (Adaptacja roślin do składu spektralnego i intensywności promieniowania). Prace Instytutu Elektrotechniki, 256, 223–236. [In Polish]

Pinnola, A., Ghin, L., Gecchele, E., Merlin, M., Alboresi, A., Avesani, L., Pezzotti, M., Capaldi, S., Cazzaniga, S., Bassi, R. (2015). Heterologous expression of moss Light-harvesting Complex Stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp. The Journal of Biological Chemistry, 290, 24340–24354. https://dx.doi.org/10.1074%2Fjbc.M115.668798

Proctor, M.C.F., Ligrone, R., Duckett, J.G. (2007). Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Annals of Botany, 99, 75–93. https://doi.org/10.1093/aob/mcl246

Proctor, M.C.F., Tuba, Z. (2002). Tansley review No. 141: Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist, 156, 327–349. https://doi.org/10.1046/j.1469–8137.2002.00526.x

Rastorfer, J.R. (1970). Effects of light intensity and temperature on photosynthesis and respiration on two East Antarctic mosses, Bryum argenteum and Bryum antarcticum. Bryologist, 73, 544–556.

Rice, S.K., Aclander, L., Hanson, D.T. (2008). Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses. American Journal of Botany, 95, 1366–1374. https://doi.org/10.3732/ajb.0800019

Rintamaki, E., Salo, R., Aro, E.M. (1994). Rapid turnover of the D1 reaction-center protein of Photosystem II as a protection mechanism against photoinhibitionin a moss, Ceratodon purpureus (Hedw.) Brid. Planta, 193, 520–529. https://doi.org/10.1007/BF02411557

Robinson, S.A., Waterman, M.J. (2014). Sunsafe bryophytes: Photoprotection from excess and damaging solar radiation. In: D.T., Hanson, S.K., Rice (eds.), Photosynthesis in bryophytes and early land plants. Advances in Photosynthesis and Respiration, 37, 113–130.

Romańska, M. (2020). Impact of water stress on physiological processes of moss Polytrichum piliferum Hedw. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 5, 129–141. https://doi.org/10.24917/25438832.5.9

Różkowski, J., Pawlik, O. (2001). Fissure-karst springs in the area of Ojców National Park (Źródła szczelinowo-krasowe w rejonie Ojcowskiego Parku Narodowego). In J., Partyja (ed.), Badania naukowe w południowej części Wyżyny Krakowsko-Częstochowskiej, Ojców, p. 83–86. [In Polish]

Ruban, A.V. (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170(4), 1903–1916. https://doi.org/10.1104/pp.15.01935

Rzepka, A. (2008). Ekofizjologiczne aspekty reakcji różnych gatunków mchów na abiotyczne czynniki stresowe (Ecophysiological aspects of the response of various moss species to abiotic stress factors). Kraków: Wydawnictwo Naukowe WSP Kraków. [In Polish]

Scotti-Campos, P., Pham-Thi, A. (2016). Correlation between total lipids, linolenic acid and membrane injury under PEG-induced dehydration in leaves of Vigna genotypes differing in drought resistance. Emirates Journal of Food and Agriculture, 28(7), 485–492. https://doi.org/10.9755/ejfa.2016-04-342

Smith, W.K., Hughes, N.M. (2009). Progress in coupling plant form and photosynthetic function. Castanea, 74, 1–26. https://doi.org/10.2179/08-009R5.1

Sołtys-Lelek, A. (2009). Changes in plant communities and their structure in the study plots Grodzisko and the Sąspowska Valley (Ojców National Park) (Struktura i zmiany zbiorowisk roślinnych na powierzchniach badawczych „Grodzisko” i w dolinie Sąspowskiej (Ojcowski Park Narodowy)). Prądnik. Prace i Materiały Muzeum im. Prof. Władysława Szafera, 19, 265–320. [In Polish]

Tallis, J.H. (1959). Studies in the biology and ecology of Rhacomitrium lanuginosum Brid. II. Growth reproduction and physiology. Journal of Ecology, 47, 325–350.

Uenaka, H., Wada, M., Kadota, A. (2005). Four distinct photoreceptors contribute to light-induced side branch formation in the moss Physcomitrella patens. Planta, 222, 623–631. https://doi.org/10.1007/s00425-005-0009-y

Wojkowski, J., Caputa, Z. (2009). Modelling the inflow of solar radiation in the Ojców National Park (Modelowanie dopływu promieniowania słonecznego na obszarze Ojcowskiego Parku Narodowego). Prądnik. Prace i Materiały Muzeum im. Prof. Władysława Szafera, 19, 141–152. [In Polish]

Wojkowski, J., Caputa, Z. (2015). Structure of radiation balance in diverse types of relief. Annals of Warsaw University of Life Sciences, 47(4), 343–354. http://doi.org/10.1515/sggw-2015-0036

Wojkowski, J., Caputa, Z. (2016). The impact of karst relief on the diversity of insolation conditions and mesoclimate variation: Case study of the Ojców National Park, Poland. International Journal of Geoheritage, 4(1), 33–43.

Downloads

Published

2021-07-02 — Updated on 2021-10-11

Versions

How to Cite

Sołtys-Lelek, A., & Caputa, Z. (2021). The influence of solar radiation on selected physiological processes of mosses in karst conditions of the spring niches of the Ojców National Park (Southern Poland): . Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 6, XX-XX. Retrieved from https://aupcstudianaturae.up.krakow.pl/article/view/8298 (Original work published July 2, 2021)

Issue

Section

Environmental Biology and Conservation