More insight into the concept of iron plaque formation and its characteristics in rice (Oryza sativa L.)

Authors

  • Peiman Zandi 1 International Faculty of Applied Technology, Yibin University, Yibin 644000, P.R. China; 2 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China https://orcid.org/0000-0003-3520-3994
  • Joanna Puła Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland
  • Xing Xia Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
  • Elke Bloem Institute for Crop and Soil Science Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Bundesallee 69, 38116 Braunschweig, Germany
  • Aminu Darma Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
  • Yaosheng Wang Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
  • Ingrid Turisová Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, Banská Bystrica 974 01, Slovakia
  • Qian Li Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
  • Luu Ngoc Sinh Faculty of Sciences and Technology, Hanoi Metropolitan University. 98 Duong Quang Ham, Cau Giay, Hanoi, Vietnam
  • Na Li Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China

DOI:

https://doi.org/10.24917/25438832.6.13

Keywords:

iron oxide plaque, toxic metals immobilisation, radial oxygen loss, paddy fields

Abstract

Trwały i bioakumulacyjny charakter toksycznych metali(oidów) (TM) jest głównym problemem związanym z ich obecnością w środowisku. Skażenie TM w glebie i osadach zwiększa potencjalne ryzyko utraty zdrowia człowieka, przez narażenie na skażenie łańcucha pokarmowego. Odkładanie płytki tlenku żelaza na korzeniach hydrofitowych (np. ryżu) jest wynikiem różnych czynników biotycznych i abiotycznych. Promieniowa utrata tlenu (ROL) odgrywa kluczową rolę w utlenianiu żelaza w ryzosferze, a następnie wytrącaniu nisko- lub wysoko krystalicznych i/lub amorficznych minerałów żelaza na powierzchni korzeni. Biorąc pod uwagę, że każdy gatunek rośliny ma unikalną zdolność tworzenia utlenionej ryzosfery w warunkach beztlenowych gleby, obecność żelaza w ryzosferze ma ogromne znaczenie. Grupy funkcyjne (-OH) i specyficzne powierzchnie reagujące w blaszkach żelaza mają wysokie powinowactwo do adsorpcji różnych metali śladowych (toksycznych/nietoksycznych), wpływając na ich wchłanianie i akumulację w roślinach. W akumulacji różnych pierwiastków ważną rolę odgrywają płytki żelaza (IP). Gatunki roślin o niskim IP na swoich korzeniach mogą lepiej akumulować metale ciężkie, niezależnie od tego, czy IP jest barierą, czy buforem. Rośliny jadalne o wysokim IP są lepszymi fito-remediatorami potencjalnie fitotoksycznych metali(oidów) i mogą być bezpieczniejsze do spożywania przez ludzi. Niniejszy przegląd podsumowuje obecną wiedze dotyczącą czynników związanych z tworzeniem i funkcjami płytki żelaza w zarządzaniu transportem metali w systemie korzeniowym.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amaral, D.C., Lopes, G., Guilherme, L.R.G., Seyferth, A.L. (2017). A new approach to sampling intact Fe plaque reveals si-induced changes in Fe mineral composition and shoot as in rice. Environmental Science and Technology, 51, 38−45. http://doi.org./10.1021/acs.est.6b03558

Asch, F., Aung, T., Becker, M. (2007). Root iron plaque formation as a resistance mechanism to iron toxicity in lowland rice. In: E. Tielkes (ed.), Utilisation of diversity in land use systems: Sustainable and organic approaches to meet human needs. Deutcher Tropentag, October 9–11, 2007, Cuvillier Verlag: Göttingen, Kassel-Witzenhausen.

Bacha, R.E., Hossner, L.R. (1977). Characteristics of coatings formed on rice roots as affected by iron and manganese additions. Soil Science Society of America Journal, 41, 931–935. https://doi.org/10.2136/sssaj1977.03615995004100050025x

Bailey-Serres, J., Lee, S.C., Brinton, E. (2012). Waterproofing crops: effective flooding survival strategies. Plant Physiology, 160, 1698–1709. https://doi.org/10.1104/pp.112.208173.

Batty, L.C., Baker, A.J.M., Wheeler B.D., Curtis, C.D. (2000). The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trinex. Steudel. Annals of Botany, 86, 647–653. https://doi.org/10.1006/anbo.2000.1191

Batty, L.C., Younger, P.L. (2003). Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed, Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany, 92(6), 801–806. https://doi.org/10.1093/aob/mcg205

Bazrkar-Khatibani, L., Fakheri, B.A., Hosseini-Chaleshtori, M., Mahender, A., Mahdinejad, N., Ali, J. (2019). Genetic mapping and validation of quantitative trait loci (QTL) for the grain appearance and quality traits in rice (Oryza sativa L.) by using recombinant inbred line (RIL) population. International Journal of Genomics, 3160275. https://doi.org/10.1155/2019/3160275

Becker, M., Asch, F. (2005). Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168, 558–573. https://doi.org/10.1002/jpln.200520504

Bedford, B.L., Leopold, D.L., Gibbs, J.P. (2001). Wetlands ecosystems. In: S.A. Levin (ed.), Encyclopedia of Biodiversity (Second Edition), Academic Press, pp. 384–402. https://doi.org/10.1016/B978-0-12-384719-5.00314-2.

Cambrollé, J., Redondo-Gómez, S., Mateos-Naranjo, E., Figueroa, M.E. (2008). Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Pollution Bulletin, 56(12), 2037–2042. https://doi.org/10.1016/j.marpolbul.2008.08.008

Cao, Z.Z., Qin, M.L., Lin, X.Y., Zhu, Z.W., Chen, M.X. (2018). Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environmental Pollution, 238, 76–84. https://doi.org/10.1016/j.envpol.2018.02.083

Chang, H-S., Buettner, S.W., Seaman, J.C., Jaffe, P.R., van Groos, P.G.K., Li, D., Peacock, A.D., Scheckel, K.G., Kaplan, D.I. (2014). Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the savannah river site under reducing conditions. Environmental Science and Technology, 48, 9270–9278. https://doi.org/10.1021/es5015136

Chen, R.F., Shen, R.F., Gu, P., Dong, X. Y., DU, C. W., Ma, J. F. (2006). Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. Annals of Botany, 98(2), 389–395. https://doi.org/10.1093/aob/mcl110

Chen, W., Chen, Z., He, Q., Wang, X., Wang, C., Chen, D., Lai, Z., (2007). Root growth of wetland plants with different root types. Acta Ecologica Sinica, 27(2), 450–457. https://doi.org/10.1016/S1872-2032(07)60017-1.

Chen, X.P., Kong, W.D., He, J.Z., Liu, W.J., Smith, S.E., Smith, F.A., Zhu, Y.G. (2008). Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? Journal of Plant Nutrition and Soil Sciences, 171, 193–199. https://doi.org/10.1002/jpln.200700018

Cheng, H., Wang, M., Wong, M.H., Ye, Z. (2014). Does radial oxygen loss and iron plaque formation on roots alters Cd and Pb uptake and distribution in rice plant tissues? Plant and Soil, 375(1/2), 137–148. https://doi.org/10.1007/s11104-013-1945-0

Christensen, K.K., Jensen, H.S., Andersen, F., Wigand, C., Holmer, M. (1998). Interferences between root plaque formation and phosphorus availability for isoetids in sediments of oligotrophic lakes. Biogeochemistry, 43, 107–128.

Clemens, S., Ma, J.F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 67, 489–512. https://doi.org/10.1146/annurev-arplant-043015-112301

Colmer, T.D. (2003). Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Annals of Botany, 91, 301–309. https://doi.org/10.1093/aob/mcf114

Deng, H., Ye, Z.H., Wong, M.H. (2009). Lead, zinc and iron (Fe2+) tolerances in wetland plants and relation to root anatomy and spatial pattern of ROL. Environmental and Experimental Botany, 65, 353–363.https://doi.org/10.1016/j.envexpbot.2008.10.005

Dou, F., Soriano, J., Tabien, R.E., Chen, K. (2016). Soil texture and cultivar effects on rice (Oryza sativa L.) grain yield, yield components and water productivity in three water regimes. PLoS ONE, 11(3), e0150549. https://doi.org/10.1371/journal.pone.0150549

Dwivedi, S., Tripathi, R.D., Srivastava, S., Singh, R., Kumar, A., Tripathi, P., Dave, R., Rai, U.N., Chakrabarty, D.P. Trivedi, K., Tuli, R., Adhikari, B., Bag, M.K. (2010). Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma, 245, 113–124. https://doi.org/10.1007/s00709-010-0151-7

Eduardo, M.J., Andrew, A.M., Erik, S., Rebeca, M., Daniel, B., Javier, S.L., Ángel, A., Antonio, L.P. (2014). Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Science of Total Environment, 485–486, 468–473. https://doi.org/10.1016/j.scitotenv.2014.03.106

Fan, J.L., Hu, Z.Y., Ziadi, N., Xia, X., Wu, C.Y.H. (2010). Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environmental Pollution, 158(2), 409–415. https://doi.org/10.1016/j.envpol.2009.08.042.

Fan, J.L., Xia, X., Hu, Z.Y., Ziadi, N., Liu, C. (2013). Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant, Soil and Environment, 59, 169–174. https://doi.org/10.17221/882/2012-PSE

Frommer, J., Voegelin, A., Dittmar, J., Marcus, M.A., Kretzschmar, R. (2011). Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: results from micro-focused X-ray spectroscopy. European Journal of Soil Science, 62(2), 305–317. https://doi.org/10.1111/j.1365-2389.2010.01328.x

Fu, Y., Yu, Z., Cai, K., Shen, H. (2010). Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects: a review (in Chinese). Plant Nutrition and Fertilizers Science, 16, 1527–1534.

Fu, Y.Q., Yang, X.J., Shen, H. (2014). The physiological mechanism of enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by phosphorus deficiency. Acta Physiologia Plantarum, 36, 179–190. https://doi.org/10.1007/s11738-013-1398-3

Gong, J.L., Xing, Z.P., Hu, Y.H.J., Zhang, H.C., Dai, Q.G., Huo, Z.Y., Xu, K., Wei, H.Y., Gao, H., Guo, B.W. (2014). Difference of root morphological and several physiological characteristics between indica and japonica super rice varieties. Acta Agronomica Sinica, 40(6), 1066–1080. https://doi.org/10.3724/SP.J.1006.2014.01066

Hansel, C.M., Fendorf, S., Sutton, S., Newville, M. (2001). Characterization of Fe plaque and associated metals on the roots of Mine-Waste impacted aquatic plants. Environmental Science and Technology, 35, 3863–3868. https://doi.org/10.1021/es0105459

Hossain, M.B., Jahiruddin, M., Loeppert, R.H., Panaullah, G.M., Islam, M.R., Duxbury, J.M. (2009b). The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant and Soil, 317, 167–176. https://doi.org/10.1007/s11104-008-9798-7

Hossain, Z., Lopez-Climent, M.F., Arbona, V., Perez-Clemente, R.M., Gomez-Cadenas, A. (2009a). Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Journal of Plant Physiology, 166, 1391–1404. https://doi.org/10.1016/j.jplph.2009.02.012

Hu, Y., Huang, Y.Z., Liu, Y.X. (2014). Influence of iron plaque on chromium accumulation and translocation in three rice (Oryza sativa L.) cultivars grown in solution culture. Chemistry and Ecology, 30(1), 29–38. doi:10.1080/02757540.2013.829050

Hu, Y., Li, J.H., Zhu, Y.G., Huang, Y. Z., Hu H.Q., Christie, P. (2005). Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. Environmental Geochemistry and Health, 27, 169–176. https://doi.org/10.1007/s10653-005-0132-5

Hu, Z.Y., Zhu, Y.G., Li, M., Zhang, L.G., Cao, Z.H., Smith, F.A. (2007). Sulphur(S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution, 147, 387–393. https://doi.org/10.1016/j.envpol.2006.06.014

Huang, G., Ding, C.F., Li, Y., Zhang, T., Wang,. X (2020). Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.). Journal of Hazardous Materials, 122860. https://doi.org/10.1016/j.jhazmat.2020.12286

Huang, H., Zhu, Y., Chen, Z., Yin, X., Sun, G. (2012a). Aresenic mobilization and speciation during iron plaque decomposition in a paddy soil. Journal of Soils and Sediments, 12, 402–410. https://doi.org/10.1007/s11368-011-0461-1

Huang, Y.C., Chen, Z., Liu, W.J. (2012b). Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V). Plant and Soil, 352, 41–49. https://doi.org/10.1007/s11104-011-0973-x

Jia, X., Otte, M.L., Liu, Y., Qin, L., Tian, X., Lu, X., Jiang, M., Zou, Y. (2018). Performance of iron plaque of wetland plants for regulating iron, manganese, and phosphorus from agricultural drainage. Water, 10(1), 42. https://doi.org/10.3390/w10010042

Jiang, F.Y., Chen, X., Luo, A.C. (2009). Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquatic Ecology, 43(4), 879–890. https://doi.org/10.1007/s10452-009-9241-z

Jiang, X., Teng, A., Xu, W., Liu, X. (2014). Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Marine Pollution Bulletin, 83(1), 366–375. https://doi.org/10.1016/j.marpolbul.2014.03.020

Kerl, C.F., Bllaran, T.B., Planer-Friedrich, B. (2019). Iron plaque at rice roots: no barrier for methylated thioarsenates. Environmental Science and Technology, 53(23), 13666–13674. https://doi.org/10.1021/acs.est.9b04158

Khan, N., Seshadri, B., Bolan, N., Saint, C.P., Kirkham, N.B., Chowdhury, S., Yamaguchi, N., Lee, D.Y., Li, G., Kunhikrishnan, A., Qi, F., Karunanithi, R., Qiu, R., Zhu, Y.G., Syu, C.H. (2016). Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advance in Agronomy, 138, 1–96. https://doi.org/10.1016/bs.agron.2016.04.002

King, G.M., Garey, M.A. (1999). Ferric iron reduction by bacteria associated with the roots of rice seedlings (Oryza sativa). Applied and Environmental Microbiology Journal, 14, 375–385. https://doi.org/10.1128/aem.65.10.4393-4398.1999

Kirk, G.J.D., Greenway, H., Atwell, B.J., Ismail, A.M., Colmer, T.D. (2014). Adaptation of rice to flooded soils. In: U. Lüttge, W. Beyschlag, J. Cushman (eds.), Progress in Botany, 75. Berlin, Heidelberg: Springer, pp. 215–253. https://doi.org/10.1007/978-3-642-38797-5_8

Lee, C.H., Hsieh, Y.C., Lin, T.H., Lee, D.Y. (2013). Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant and Soil, 363, 231–241. https://doi.org/10.1007/s11104-012-1308-2.

Lee, S.O., Tran, T., Jung, B.H., Kim, S.J., Kim, M.J. (2007). Dissolution of iron oxide using oxalic acid. Hydrometallurgy, 87, 91–99. https://doi.org/10.1016/j.hydromet.2007.02.005

Li, Z., Wu, L., Zhang, H., Luo, Y., Christie, P. (2015). Effects of soil drying and wetting drying cycles on the availability of heavy metals and their relationship to dissolved organic matter. Journal of Soils and Sediments, 1, 1510–1519. https://doi.org/10.1007/s11368-015-1090-x

Liang, Y., Zhu, Y.G., Xia, Y., Li, Z., Ma, Y. (2006). Iron plaque enhances phosphorus uptake by rice (Oryza sativa L.) growing under varying phosphorus and iron concentrations. Annals of Applied Biology, 149(3), 305–312. https://doi.org/10.1111/j.1744-7348.2006.00095.x

Liu, C., Gong, X., Chen, C., Yang, J., Xu, S. (2015). The effect of iron plaque on lead translocation in soil-Carex cinerascens kukenth system. International Journal of Phytoremediation, 18(1), 1–9. https://doi.org/10.1080/15226514.2015.1021954

Liu, C., Huang, P.M. (2003). Kinetics of lead adsorption by iron oxides formed under the influence of citrate. Geochimica et Cosmochimica Acta, 67, 1045–1054. https://doi.org/10.1016/S0016-7037(02)01036-0

Liu, H., Zhang, J., Christie, P., Zhang, F. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394(2–3), 361–368. https://doi.org/10.1016/j.scitotenv.2008.02.004

Liu, H.J., Zhang, J.L., Zhang, F.S. (2007). Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environmental and Experimental Botany, 59, 314–320. https://doi.org/10.1016/j.envexpbot.2006.04.001

Liu, W.J., Chen, L.N., Wang, Y. (2010). Dynamics of As species in the interface of soil and rice roots under three water regimes. In: J-M. Xu, P.M. Huang (eds.), Molecular environmental soil science at the interfaces in the Earth's Critical Zone. Germany: Springer Science and Business Media, pp. 164–166. https://doi.org/10.1007/978-3-642-05297-2_50

Liu, W.J., Zhu, Y.G, Smith, F.A., Smith, S.E. (2004a). Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany, 55, 1707–1713. https://doi.org/10.1093/jxb/erh205

Liu, W.J., Zhu, Y.G., Hu, Y., Williams, P.N., Gault, A.G., Meharg, A.A., Charnock, J.M., Smith, F.A. (2006). Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environmental Science and Technology, 40(18), 5730−5736. https://doi.org/10.1021/es060800v

Liu, W.J., Zhu, Y.G., Smith, F.A., Smith, S.E. (2004b). Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist, 62, 481–488. https://doi.org/10.1111/j.1469-8137.2004.01035.x

Liu, X., Zhao, Z., Hu, C., Zhao, X., Guo, Z. (2016). Effect of sulphate on selenium uptake and translocation in rape (Brassica napus L.) supplied with selenate or selenite. Plant and Soil, 399, 295–304. https://doi.org/10.1007/s11104-015-2699-7

Machado, W., Gueiros, B.B., Sebastiao, D., Lisboa-Filho, L., Lacerda, D. (2005). Trace metals in mangrove seedlings: role of Iron plaque formation. Wetlands Ecology Management, 13(2), 199–206. https://doi.org/10.1007/s11273-004-9568-0

Maisch, M., Lueder, U., Laufer, K., Scholze, C., Kappler, A., Schmidt, C. (2019) Contribution of microaerophilic iron(II)-oxidizers to iron(III) mineral formation. Environmental Science and Technology, 53, 8197–8204. https://doi.org/10.1021/acs.est.9b01531

Mishra, S., Jha, A.B., Dubey, R.S. (2011). Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma, 248, 565–577. https://doi.org/10.1007/s00709-010-0210-0

Møller, C.L., Sand-Jensen, K. (2008). Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna. New Phytologist, 179(3), 848–856. https://doi.org/10.1111/j.1469-8137.2008.02506.x

Neubauer, S.C., Emerson, D., Megonigal, J.P. (2002). Life at the energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Applied and Environmental Microbiology Journal, 68, 3988–3995. https://doi.org/10.1128/AEM.68.8.3988-3995.2002

Neubauer, S.C., Emerson, D., Megonigal, J.P. (2008). Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. In: A. Violante, P.M. Huang, G.M. Gadd (eds.), Biophysico-chemical processes of heavy metals and metalloids in soil environments. New Jersey, USA: John Wiley and Sons, Inc, Hoboken, pp. 339–372.

Neubauer, S.C., Toledo-Dur´an, G.E., Emerson, D., Megonigal, J.P. (2007). Returning to their roots: iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere. Geomicrobiology Journal, 24, 65–73. https://doi.org/10.1080/01490450601134309

Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5, 2. https://doi.org/10.1186/1939-8433-5-2

Norton, G.J., Douglas, A., Lahner, B., Yakubowa, E., Lou Guerint, M., Pinson, S.R.M., Tarpley, L., Eizenga, G.C., Zhao, F.-J., Rafiqul Islam, M., Islam, S., Duan, G., Zhu, Y., Salt, D.E., Meharg, A.A., Price, A.H. (2014). Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS ONE, 9(2), e89685. https://doi.org/10.1371/journal.pone.0089685

Otte, M.L., Rozema, J., Koster, L., Haarsma, M.S., Broekman, R.A. (1989). Iron plaque on roots of Aster tripolium L. interaction with zinc uptake. New Phytologist, 111(2), 309–317. https://doi.org/10.1111/j.1469-8137.1989.tb00694.x

Peng, C., Chen, S., Shen, C., He, M., Zhang, Y., Ye, J., Liu, J., Shi, J., (2018). Iron plaque: a barrier layer to the uptake and translocation of copper oxide nanoparticles by rice plants. Environmental Science and Technology, 52(21), 12244–12254. https://doi.org/10.1021/acs.est.8b02687

Pereira, E.G., Oliva, M.A., Siqueira-Silva, A.I., Rosado-Souza, L., Pinheiro, D.T., Almeida, A.M. (2014). Tropical rice cultivars from lowland and upland cropping systems differ in iron plaque formation. Journal of Plant Nutrition, 37, 1373–1394. https://doi.org/10.1080/01904167.2014.888744

Perret, D., Gaillard, J.F., Dominik, J., Atteia, O. (2000). The diversity of natural hydrous iron oxides. Environmental Science and Technology, 34, 3540–3546. https://doi.org/10.1021/es0000089

Povidisa, K., Delefosse, M., Holmer, M. (2009). The formation of iron plaques on roots and rhizomes of the seagrass Cymodocea serrulata (R. Brown) ascherson with implications for sulphide intrusion. Aquatic Botany, 90, 303–308. https://doi.org/10.1016/j.aquabot.2008.11.008

Schmidt, H., Eickhorst, T., Tippkötter, R. (2011). Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis. Plant and Soil, 341, 221–232. https://doi.org/10.1007/s11104-010-0637-2

Seyfferth, A.L., Webb, S.M., Andrews, J.C., Fendorf, S. (2011). Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochimica Et Cosmochimica Acta, 75(21), 6655–6671. https://doi.org/10.1016/j.gca.2011.06.029.

Seyfferth, A.L., Webb, S.M., Andrews, J.C., Fendrof, S. (2010). Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environmental Science and Technology, 44, 8108–8113. https://doi.org/10.1021/es101139z

Sharma, R., Kaur, R. (2020). Physiological and metabolic alterations induced by phthalates in plants: possible mechanisms of their uptake and degradation. Environmental Sustainability, 3, 391–404. https://doi.org/10.1007/s42398-020-00141-x

Shi, K., Zhang, F.S., Liu, X.J., Zhang, X.D. (2004). Effects of different periods applied Fe2+ and concentrations on Fe and Cd contents in iron plaque on rice root. Journal of Agro-Environment Science, 23, 6–12.

Singha, K.T., Sebastian, A., Prasad, M.N.V. (2019). Iron plaque formation in the roots of Pistia stratiotes L.: importance in phytoremediation of cadmium. International Journal of Phytoremediation, 21(2), 120–128. https://doi.org/10.1080/15226514.2018.1474442

St-Cyr, L., Crowder, A.A. (1989). Factors affecting iron plaque on the roots of Phragmites-Australis (Cav) Trin Ex Steudel. Plant and Soil, 116, 85–93. https://doi.org/10.1007/BF02327260

Sun, L., Zheng, C., Yang, J., Peng, C., Xu, C., Wang, Y., Feng, J., Shi, J. (2016). Impact of sulfur (S) fertilization in paddy soils on copper (Cu) accumulation in rice (Oryza sativa L.) plants under flooding conditions. Biology and Fertility of Soils, 52, 31–39. https://doi.org/10.1007/s00374-015-1050-z

Sundby, B., Vale, C., Cacador, I., Catarino, F., Madureira, M.J., Caetano, M. (1998). Metal-rich concretions on the roots of salt marsh plants: mechanism and rate of formation. Limnology and Oceanography, 43, 245–252. https://doi.org/10.4319/lo.1998.43.2.0245

Syu, C.H., Jiang, P.Y., Huang, H.H., Chen, W.T., Lin, T.H., Lee, D.Y. (2013). Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Science and Plant Nutrition, 59, 463–471. https://doi.org/10.1080/00380768.2013.784950

Syu, C.H., Lee, C.H., Jiang, P.Y., Chen, M.K., Lee, D.Y. (2014). Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant and Soil, 374(1/2), 411–422. https://doi.org/10.1007/s11104-013-1893-8

Taylor, G.J, Crowder, A.A. (1963). Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture. Canadian Journal of Botany, 61, 1825–1830. https://doi.org/10.1139/b83-193

Taylor, G.J., Crowder, A.A., Rodden, R. (1984). Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture. American Journal of Botany, 71(5), 666–675. https://doi.org/10.2307/2443363

Thomas, A.L., Guerreino, M.C., Sodek, L. (2005). Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Annals of Botany, 96(7), 1191–1198. https://doi.org/10.1093/aob/mci272

Tripathi, R.D., Tripathi, P., Dwivedi, S., Kumar, A., Mishra, A., Chauhan, P.S., Norton, G.J., Nautiyal, C.S. (2014). Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics, 6, 1789–1800. https://doi.org/10.1039/c4mt00111g

Wang, X., Yao, H., Wong, M.H., Ye, Z. (2013). Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environmental Geochemistry and Health, 35, 779–788. https://doi.org/10.1007/s10653-013-9534-y

Wang, X.J., Chen, X.P., Yang, J., Wang, Z., Sun, G. (2009). Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. Journal of Environmental Science-China, 21(11), 1562–1568. https://doi.org/10.1016/s1001-0742(08)62456-0

Weiss, J.V., Emerson, D., Backer, S.M., Megonigal, J.P. (2003). Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle. Biogeochemistry, 64, 77–96. https://doi.org/10.1023/A:1024953027726

Weiss, J.V., Emerson, D., Megonigal, J.P. (2004). Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiology Ecology, 48(1), 89–100. https://doi.org/10.1016/j.femsec.2003.12.014

Weiss, J.V., Emerson, D., Megonigal, J.P. (2005). Rhizosphere iron(III) deposition and reduction in a Juncus effusus L.-dominated wetland. Soil Science Society of America Journal, 69(6), 1861–1870. https://doi.org/10.2136/sssaj2005.0002

Williams, P.N., Larsen, M., Lehto, N.J., Oburger, E., Wenzel, W., Glud, R.N., Davison, W., Zhang, H. (2014). Localised flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice. Environmental Science and Technology, 48(15), 8498–8506. https://doi.org/10.1021/es501127k

Wu, C., Ye, Z., Li, H., Wu, S., Deng, D., Zhu, Y., Wong, M. (2012). Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? Journa of Experimantal Botany, 63(8), 2961–2970. https://doi.org/10.1093/jxb/ers017.

Wu, C., Ye, Z., Shu, W., Zhu, Y., Wong, M. (2011). Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. Journal of Experimental Botany, 62(8), 2889–2898. https://doi.org/10.1093/jxb/erq462.

Wu, L.B., Shhadi, M., Gregorio, G., Matthus E., Becker M., Frei, M., (2014). Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice, 7(1), 1–12. https://doi.org/10.1186/s12284-014-0008-3

Xia, X., Yang, J., Yan, Y., Wang, J., Hu, Y., Zeng, X. (2020). Molecular sorption mechanisms of Cr(III) to organo-ferrihydrite coprecipitates using synchrotron-based EXAFS and STXM Techniques. Environmental Science and Technology, 54(20), 12989–12997. https://doi.org/10.1021/acs.est.0c02872

Xu, B., Wang, F., Zhang, Q., Lan, Q., Liu, C., Guo, X., Cai, Q., Chen, Y., Wang, G., Ding, J. (2018). Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings: insights from hydroponic and soil cultivation. Ecotoxicology and Environmental Safety, 162, 51–58. https://doi.org/10.1016/j. ecoenv.2018.06.063

Xu, B., Yu, S. (2013). Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa L.). Annals of Botany, 111(6), 1189–1195. https://doi.org/10.1093/aob/mct072

Xu, B., Yu, S., Ding, J., Wu, S., Ma, J. (2015). Metal-dependent root iron plaque effects on distribution and translocation of chromium and nickel in Yellow Flag (Iris pseudacorus L.). International Journal of Phytoremediation, 17(1–6), 175–181. https://doi.org/10.1080/15226514.2013.876965.

Xu, J.Z., Wei, Q., Yu, Y.M., Peng, S.Z., Yang, S.H. (2013). Influence of water management on the mobility and fate of copper in rice field soil. Journal of Soils and Sediments, 13, 1180–1188. https://doi.org/10.1007/s11368-013-0716-0

Yamada, H., Takeda, C., Mizushima, A., Yoshino, K., Yonebayashi, K. (2005). Effect of oxidizing power of roots on iodine uptake by rice plants. Soil Science and Plant Nutrition, 61, 141–145. https://doi.org/10.1111/j.1747-0765.2005.tb00018.x

Yamaguchi, N., Ohkura, T., Takahashi, Y., Maejima, Y., Arao, T. (2014). Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environmental Science and Technology, 48, 1549–1556. https://doi.org/10.1021/es402739a

Yamauchi, T., Shimamura, S., Nakazono, M., Mochizuki, T. (2013). Aerenchyma formation in crop species: A review. Field Crops Research, 152, 8–16. https://doi.org/10.1016/j.fcr.2012.12.008.

Yamazaki, S., Ueda, Y., Mukai, A., Ochiai, K., Matoh, T. (2018). Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance. Plant Direct, 2, 1–15. https://doi.org/10.1002/pld3.34

Yang, J., Liu, Z., Wan X., Zheng, G., Yang, J., Zhang, H., Guo, L., Wang, X., Zhou, X., Guo, Q., Xu, R., Zhou, G., Peters, M., Zhu, G., Wei, R., Tian, L., Han, X. (2016). Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Ecotoxicology and Environmental Safety, 128, 206–212. https://doi.org/10.1016/j.ecoenv.2016.02.021

Yang, J., Xia, X., Liu, J., Wang, J., Hu, Y. (2020). Molecular mechanisms of chromium (III) immobilization by organo–ferrihydrite co-precipitates: The significant roles of ferrihydrite and carboxyl. Environmental Science and Technology, 54(8), 4820–4828. https://doi.org/10.1021/acs.est.9b06510

Yang, J.X., Tam, N.F.Y., Ye, Z.H. (2014). Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant and Soil, 374(1–2), 815–828. https://doi.org/10.1007/s11104-013-1922-7

Yang, L.F., Li, Y.W., Yang, X.Y., Xiao, H., Peng, H., Deng, S. (2011). Effects of iron plaque on phosphorus uptake by Pilea cadierei cultured in constructed wetland. Procedia Environmental Science, 11, 1508–1512. https://doi.org/10.1016/j.proenv.2011.12.227

Yao, F., Shen, G.X., Li, X.L., Li, H.Z., Hu, H., Ni, W.Z. (2011). A comparative study on the potential of oxygen release by roots of selected wetland plants. Physics and Chemistry of the Earth, 36, 475–478. https://doi.org/10.1016/j.pce.2010.11.001

Ye, Z.H., Cheung, K.C., Wong, M.H. (2003). Cadmium and nickel adsorption and uptake in cattail as affected by iron and manganese plaque on the root surface. Communications in Soil Science and Plant Analysis, 34, 2763–2778. https://doi.org/10.1081/CSS-120025202

Ye, Z.H., Baker, A.J.M., Wong, M.H., Willis, A.J. (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytologist, 136(3), 469–480. https://doi.org/10.1046/j.1469-8137.1997.00759.x

Ye, Z.H., Cheung, K.C., Wong, M.H. (2001). Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany, 79, 314–320. https://doi.org/10.1139/b01-012

Zandi, P., Yang, J., Xia, X., Barabasz-Krasny, B., Możdżeń, K., Puła, J., Bloem, E., Wang, Y., Hussain, S., Hashemi, S.M., Różanowski, B., Li, Q. (2021). Sulphur nutrition and iron plaque formation on roots of rice seedlings and their consequences for immobilisation and uptake of chromium in solution culture. Plant and Soil, 462, 365–388. https://doi.org/10.1007/s11104-021-04870-8

Zandi, P., Yang, J.J., Xin, X., Yu, T., Li, Q., Możdżeń, K., Yaosheng, W. (2020). Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in culture solution? Journal of Hazardous Materials, 388, 121803. https://doi.org/10.1016/j.jhazmat.2019.121803

Zhang, J-Y., Zhou, H., Zeng, P., Wang, S-L., Yang, W-J., Huang, F., Huo, Y., Yu, S-N., Gu, J-F., Liao, B-H., (2021). Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root. Chemosphere, 276, 130212. https://doi.org/10.1016/j.chemosphere.2021.130212.

Zhang, Q., Chen, H., Huang, D., Xu, C., Zhu, H., Zhu, Q. (2019b). Water managements limit heavy metal accumulation in rice: Dual effects of iron-plaque formation and microbial communities. Science of the Total Environment, 687, 790–799. https://doi.org/10.1016/j.scitotenv.2019.06.044.

Zhang, Q., Chen, H., Xu, C., Zhu, H., Zhu, Q. (2019a). Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes. Environmental and Experimental Botany, 162, 392–398. https://doi.org/10.1016/j.envexpbot.2019.03.004.

Zhang, W., Lin, K.F., Zhou, J., Zhang, W., Liu, L., Han, X. (2013). Spatial distribution and toxicity of cadmium in the joint presence of sulfur in rice seedling. Environmental Toxicology and Pharmacology, 36, 1235–1241. https://doi.org/10.1016/j.etap.2013.10.007

Zhou, X.B, Shi W.M., Zhang, L.H. (2007). Iron plaque outside roots affects selenite uptake by rice (Oryza sativa L.) grown in solution culture. Plant and Soil, 290, 17–28. https://doi.org/10.1007/s11104-006-9072-9

Downloads

Published

2021-10-11 — Updated on 2021-11-19

How to Cite

Zandi, P., Puła, J., Xia, X., Bloem, E., Darma, A. ., Wang, Y. ., Turisová, I., Li, Q., Ngoc Sinh, L., & Li, N. (2021). More insight into the concept of iron plaque formation and its characteristics in rice (Oryza sativa L.). Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 6, 226–. https://doi.org/10.24917/25438832.6.13

Issue

Section

Various

Most read articles by the same author(s)

1 2 > >>